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3 de noviembre de 2011

Sefiores

Comité de Condonacion de COLCIENCIAS
Cra 7B Bis No. 132-28

Bogota D.C

Colombia

Solicitud de Estudio de documentos para condonacion de beca-crédito otorgada por
Colciencias al Dr. Leonardo Marifio Ramirez

Agradezco inmensamente todo el apoyo que he recibido por parte de COLCIENCIAS
desde el principio de mi carrera como Investigador. Es mi deseo continuar impulsando el
desarrollo de la bioinformatica en Colombia a través de actividades de cooperacion
internacional desde mi posicion como Staff Scientist en el National Center for
Biotechnology Information (NCBI).

Atentamente me dirijo a Ustedes para solicitarles el estudio de los documentos que pongo
a su disposicion. En 1997 tuve el honor de ser becario del programa Fulbright-
Colciencias-IIE para realizar estudios de doctorado en los Estados Unidos. En 2002
culmine exitosamente mis estudios de doctorado en la Universidad de Texas A&M,
regrese a Colombia en 2008 y tengo un programa de investigacion activo en
bioinformatica con varios investigadores Colombianos y pertenezco a dos grupos de
investigacion clasificados en A (COL0085459) y A1 (COL0078428) respectivamente.
Ademas he participado en la capacitacion de un gran numero estudiantes de pregrado y
postgrado.

De antemano les agradezco el estudio de mi solicitud de condonacion.

Atentamente,

O/éOmm»/E/o ﬂ/ﬂwrﬁo L.

Leonardo Marifio Ramirez, Ph.D.

Staff Scientist, Computational Biology Branch

National Center for Biotechnology Information, NLM, NIH
Building 38A, Room 6S614M

8600 Rockville Pike, MSC 6075

Bethesda, MD 20894-6075

Tel: +1 301-402-3708

E-mail: marino@ncbi.nlm.nih.gov
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Leonardo Marino-Ramirez
Staff Scientist - NCBI/ NLM / NIH

Building 38A, Room 6S614M

8600 Rockville Pike
Bethesda, MD 20894

Phone: (301) 402-3708 Fax: (301) 480-2288
E-mail: marino@ncbi.nlm.nih.gov

1997 — 2002

1988 — 1992

2012 — Present

2008 — 2012
2004 — 2008
2002 -2004
1997 — 2002
1996

Texas A&M University. College Station, TX.
PhD - Biochemistry

Universidad de Los Andes. Bogota, Colombia
BSc - Microbiology

Computational Biology Branch. National Center for

Biotechnology Information. National Library of Medicine.

National Institutes of Health. Bethesda, MD

Staff Scientist

Computational Biology and Bioinformatics Unit.

Biotechnology and Bioindustry Center. Corporacion

Colombiana de Investigacion Agropecuaria (CORPOICA).

Bogota, Colombia.

Associate Investigator

Computational Biology Branch. National Center for

Biotechnology Information. National Library of Medicine.

National Institutes of Health. Bethesda, MD

Staff Scientist

Computational Biology Branch. National Center for

Biotechnology Information. National Library of Medicine.

National Institutes of Health. Bethesda, MD

Research Fellow

- Computational analysis of mammalian promoter
sequences for the identification of regulatory elements.

Supervisor: David Landsman

The Hu lab. Department of Biochemistry and Biophysics.

Texas A&M University. College Station, TX.

Research Assistant

- Mapping protein oligomerization domains from yeast
and E. coli in bacterial cells.

Advisor: James C. Hu

Boyce Thompson Institute for Plant Research. Cornell

University. Ithaca, NY.

Visiting Scientist

- Genetic transformation of potato (Solanum spp.).
Analysis of gene expression during breaking potato

Leonardo Marifio-Ramirez, Ph.D. — 3/4/2013
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1995
1994 — 1997
1992 — 1994

tuber dormancy.

Advisor: Charles J. Arntzen

Institute of Biosciences and Technology. Texas A&M

University. Houston, TX.

Visiting Scientist

- DNA sequence analysis of cucumber mosaic virus
(CMV) coat protein gene isolated from Colombian
cultivars.

Advisor: Charles J. Arntzen

National Plant Biotechnology Program. Corporacién

Colombiana de Investigacion Agropecuaria (CORPOICA).

Bogota, Colombia.

Research Assistant

- Molecular characterization of Bacillus thuringiensis
isolates.

- Genetic transformation of banana (Musa spp.)

Advisor: Javier Narvaez-Vasquez

Immunology Institute. San Juan de Dios Hospital. National

University of Colombia. Bogota, Colombia

Research Assistant

- Molecular characterization of pathogen related genes
from Mycobacterium tuberculosis.

Advisor: Manuel E. Patarroyo

- DHHS / NIH / NLM — Special Achievement Award (2006)

- GlaxoSmithKline Bioinformatics Prize. Best paper award
13™ Annual International Conference on Intelligent
Systems for Molecular Biology - ISMB 2005 (2005)

- Encyclopedia Britannica Scholarship (1997)

- Fulbright/Colciencias/IIE pre-doctoral Fellowship (1997)

- Fellowship in Bioinformatics. International Centre for
Genetic Engineering and Biotechnology — ICGEB (1996)

- Short-Term Fellowships in Biotechnology. UNESCO
(1996)

- Cochran Fellowship Program in Biotechnology. United
States Department of Agriculture — USDA (1995)

- American Society for Biochemistry and Molecular Biology
(ASBMB)

- International Society for Computational Biology (ISCB)

- Fulbright Alumni Association

Leonardo Marifio-Ramirez, Ph.D. — 3/4/2013
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Research
articles

- Novoa-Aponte L, Leon-Torres A, Patifio-Ruiz M, Cuesta-
Bernal J, Salazar LM, Landsman D, Marino-Ramirez L,
Soto CY. (2012) In silico identification and characterization
of the ion transport specificity for P-type ATPases in the
Mycobacterium tuberculosis complex. BMC Struct Biol.
12:25.

- Kostka JE, Green SJ, Rishishwar L, Prakash O, Katz LS,
Mariino-Ramirez L, Jordan IK, Munk C, Ivanova N,
Mikhailova N, Watson DB, Brown SD, Palumbo AV,
Brooks SC. (2012) Genome sequences for six
Rhodanobacter strains, isolated from soils and the terrestrial
subsurface, with variable denitrification capabilities. J
Bacteriol. 194:4461-4462.

- Hansen L, Marifo-Ramirez L, Landsman D. (2012)
Differences in local genomic context of bound and unbound
motifs. Gene. 506:125-134.

- Spouge JL, Marifio-Ramirez L. (2012) The practical
evaluation of DNA barcode efficacy. Methods Mol Biol.
858:365-377.

- Garzon-Martinez GA, Zhu ZI, Landsman D, Barrero LS,
Marino-Ramirez L. (2012) The Physalis peruviana leaf
transcriptome: assembly, annotation and gene model
prediction. BMC Genomics. 13:151.

- Heibel SK, Lopez GY, Panglao M, Sodha S, Mariiio-
Ramirez L, Tuchman M, Caldovic L. (2012) Transcriptional
regulation of N-acetylglutamate synthase. PLoS One.
7:€29527.

- Hansen, L, Kim, NK, Mariifio-Ramirez L, Landsman D.
(2011) Analysis of biological features associated with
meiotic recombination hot and cold spots in Saccharomyces
cerevisiae. PLoS One. 6:€29711.

- Huda, A., Tyagi, E., Marifio-Ramirez, L., Bowen NJ,
Jjingo D, Jordan IK. (2011) Prediction of transposable
element derived enhancers using chromatin modification
profiles. PLoS One. 6:€27513.

- Gonzalez-Pérez, M., Murcia, M.I., Landsman, D., I. King
Jordan and Marifio-Ramirez, L. (2011) The genome
sequence of Mycobacterium colombiense CECT 3035 type
strain. J. Bacteriol. 193:5866-5867.

- Simbaqueba, J., Sanchez, P., Sanchez, E., Nufiez Zarantes,
V. M., Chacon, M. 1., Barrero, L. S. and Mariiio-Ramirez,
L. (2011) Development and Characterization of
Microsatellite Markers for the Cape Gooseberry Physalis

Leonardo Marifio-Ramirez, Ph.D. — 3/4/2013
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peruviana. PLoS One. 6:€26719.

- Mariio-Ramirez, L., Levine, K. M., Morales, M., Zhang,
S., Moreland, R. T., Baxevanis, A. D. and Landsman D.
(2011) The Histone Database: an integrated resource for
histones and histone fold-containing proteins. Database
(Oxford): bar048.

- Jjingo, D., Huda, A., Gundapuneni, M., Marifio-
Ramirez, L. and I. King Jordan (2011) Effect of the
transposable element environment of human genes on gene
length and expression. Genome Biol Evol. 3:259-271.

- Valderrama-Aguirre, A., Zuiiga-Soto, E., Marifio-
Ramirez, L., Moreno, L.A., Escalante, A.A., Arévalo-
Herrera, M. and Herrera S. (2011) Polymorphism of the
Pv200L fragment of merozoite surface protein-1 of
Plasmodium vivax in clinical isolates from the Pacific coast
of Colombia. Am J Trop Med Hyg. 84(2 Suppl):64-70.

- Huda, A., Marifio-Ramirez, L. and Jordan, I. K. (2010)
Epigenetic histone modifications of human transposable
elements: genome defense versus exaptation. Mob DNA. 1:2.
- Hansen, L., Marifio-Ramirez, L. and Landsman, D. (2010)
Many sequence-specific chromatin modifying protein-
binding motifs show strong positional preferences for
potential regulatory regions in the Saccharomyces cerevisiae
genome. Nucleic Acids Research. 38:1772-1779.

- Wang, J., Bowen, N. J., Marifio-Ramirez, L. and Jordan,
I. K. (2009) A c-Myc regulatory subnetwork from human
transposable element sequences. Mol Biosyst. 5:1831-1839.
- Huda, A., Marifio-Ramirez, L., Landsman, D. and Jordan,
I. K. (2009) Repetitive DNA elements, nucleosome binding
and human gene expression. Gene. 436:12-22.

- Ogurtsov, A. Y., Marifio-Ramirez, L., Johnson, G. R.,
Landsman, D., Shabalina, S. A. and Spiridonov, N. A.
(2008) Expression patterns of protein kinases correlate with
gene architecture and evolutionary rates. PLoS ONE.
3:e3599.

- Kim, N-K., Tharakaraman, K., Marifio-Ramirez, L. and
Spouge, J. L. (2008) Finding sequence motifs with Bayesian
models incorporating positional information: an application
to transcription factor binding sites. BMC Bioinformatics.
9:262.

- Polavarapu, N., Marifio-Ramirez, L., Landsman, D.,
McDonald, J. F. and Jordan, 1. K. (2008) Evolutionary rates
and patterns for human transcription factor binding sites
derived from repetitive DNA. BMC Genomics. 9:226.

- Tharakaraman, K., Bodenreider, O., Landsman, D., Spouge
J. L. and Marifio-Ramirez, L. (2008) The biological

Leonardo Marifio-Ramirez, Ph.D. — 3/4/2013
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function of some human transcription factor binding motifs
varies with position relative to the transcription start site.
Nucleic Acids Research. 36:2777-2786.

- Resch, A. M., Carmel, L., Marifio-Ramirez, L., Ogurtsov,
A.Y., Shabalina, S. A., Rogozin, I. B. and Koonin, E. V.
(2007) Widespread Positive Selection in Synonymous Sites
of Mammalian Genes. Molecular Biology and Evolution.
24:1821-1831.

- Pirtyapongsa, J., Marifio-Ramirez, L. and Jordan, 1. K.
(2007) Origin and evolution of human microRNAs from
transposable elements. Genetics. 176:1323-1337.

- Riz, I., Akimov, S. S., Eaker, S. S., Baxter, K. K., Lee, H.
J., Mariiio-Ramirez, L., Landsman, D., Hawley, T. S. and
Hawley, R. G. (2007) TLX1/HOX1 1-induced hematopoietic
differentiation blockade. Oncogene. 26:4115-4123.

- Mariio-Ramirez, L., Jordan, I. K. and Landsman, D.
(2006) Multiple independent evolutionary solutions to core
histone gene regulation. Genome Biology. 7:R122.

- Mariino-Ramirez, L., Bodenreider, O., Kantz, N. and
Jordan, I. K. (2006) Co-evolutionary Rates of Functionally
Related Yeast Genes. Evolutionary Bioinformatics. 2:295-
300.

- Tsaparas, P., Marifio-Ramirez, L., Bodenreider, O.,
Koonin, E. V. and Jordan, 1. K. (2006) Global similarity and
local divergence in human and mouse gene co-expression
networks. BMC Evolutionary Biology. 6:70.

- Mariino-Ramirez, L., Tharakaraman, K., Sheetlin, S. L.,
Landsman, D. and Spouge, J. L. (2006) Scanning sequences
after Gibbs sampling to find multiple occurrences of
functional elements. BMC Bioinformatics. 7:408.

- Mariio-Ramirez, L. and Jordan, 1. K. (2006)
Transposable element derived DNasel-hypersensitive sites in
the human genome. Biology Direct. 1:20.

- Mariino-Ramirez, L., Hsu, B., Baxevanis, A. D. and
Landsman, D. (2006) The Histone Database: a
comprehensive resource for histones and histone fold-
containing proteins. Proteins. 62:838-842.

- Eriksson, P. R., Mendiratta, G., McLaughlin, N.,
Wolfsberg, T., Marifio-Ramirez, L., Pompa, T., Jainerin,
M., Landsman, D., Shen, C-H. and Clark, D. J. (2005)
Global regulation by the yeast Spt10 protein is mediated
through chromatin structure and the histone UAS elements.
Molecular and Cellular Biology. 25:9127-9137.

- Mariino-Ramirez, L., Tharakaraman, K., Sheetlin, S.,
Landsman, D. and Spouge, J. L. (2005) Alignments anchored
on genomic landmarks can aid in the identification of

Leonardo Marifio-Ramirez, Ph.D. — 3/4/2013
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regulatory elements. Bioinformatics. 21 Suppl 1:1440-1448.
- Jordan, I. K., Mariiio-Ramirez, L. and Koonin, E. V.
(2005) Evolutionary significance of gene expression
divergence. Gene, 345:119-126.

- Mariiio-Ramirez, L., Spouge, J. L., Kanga, G. C. and
Landsman, D. (2004) Statistical analysis of over-represented
words in human promoter sequences. Nucleic Acids Res.,
32:949-958.

- Jordan, I. K., Marifio-Ramirez, L., Wolf, Y. I. and
Koonin, E. V. (2004) Conservation and co-evolution in the
scale-free human gene co-expression network. Molecular
Biology and Evolution. 21:2058-2070.

- Mariio-Ramirez, L., Minor, J. L., Reading, N. and Hu, J.
C. (2004) Identification and mapping of self-assembling
protein domains encoded by the Escherichia coli K-12
genome using A repressor fusions. J. Bacteriol., 186:1311-
1319.

- Mariiio-Ramirez, L. and Hu, J. C. (2002) Isolation and
mapping of self-assembling protein domains encoded by the
Saccharomyces cerevisiae genome. Yeast, 19:641-650.
-Moon, Y. S., Clendennen, S. K., Marifio-Ramirez, L. and
May, G. D. (1997) Differential gene expression during the
break in potato tuber dormancy. Plant Physiol., 114: 1636-
1636 Suppl. S.

- Marifio-Ramirez, L. (1997) Clonacion del gen de la
capside proteica de una cepa colombiana del virus del
mosaico del pepino (CMV) para su expresion en plantas por
transformacion mediante Agrobacterium. Revista Corpoica
2, 58-59.

- Hernandez Fernandez, J., Mariino-Ramirez, L., Orozco
Cardenas, M. L. y Narvéaez Vasquez J. (1996) Uso de la
reaccion en cadena de la polimerasa para la caracterizacion
de aislamientos nativos de Bacillus thuringiensis. Revista
Corpoica 2, 1-9.

- Mariino-Ramirez, L., Hernandez Fernandez, J., Orozco
Cardenas, M. L. y Narvédez Vasquez J. (1996)
Caracterizacion Molecular de Genes cry de Bacillus
thuringiensis utilizando PCR Extra-Rapida. Revista
Corpoica 1, 47-47.

- Reichel, H., Mariino-Ramirez, L., Kummert, J.,
Belalcazar, S. y Narvaez, J. (1996) Caracterizacion del gen
de la proteina de la capside de dos aislamientos del virus del
mosaico del pepino (CMV), obtenidos de platano y banano
(Musa spp.) Revista Corpoica 1, 1-5.

Leonardo Marifio-Ramirez, Ph.D. — 3/4/2013
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Invited
Review
articles

Invited
Book chapters

2012

2008 — Present

2007

- Mariino-Ramirez, L., Kann, M. G., Shoemaker, B. A. and
Landsman, D. (2005) Histone structure and nucleosome
stability. Expert Review of Proteomics. 2:719-729.

- Marino-Ramirez, L., Lewis, K. C., Landsman, D. and
Jordan, 1. K. (2005) Transposable elements donate lineage-
specific regulatory sequences to host genomes. Cytogenetic
and Genome Research. 110:333-341.

- Mariino-Ramirez, L., Tharakaraman, K., Bodenreider, O.,
Spouge, J. L. and Landsman, D. (2009) Identification of cis-
Regulatory Elements in Gene Co-expression Networks
Using A-GLAM, in Methods in Molecular Biology:
Computational Systems Biology, (McDermott, J.;
Samudrala, R.; Bumgarner, R.; Montgomery, K.; Ireton, R.
ed.) 541:3-22, Springer, New York, NY.

- Mariio-Ramirez, L., Tharakaraman, K., Spouge, J. L. and
Landsman, D. (2009) Promoter analysis: gene regulatory
motif identification with A-GLAM, in Methods in Molecular
Biology: Bioinformatics for DNA Sequence Analysis,
(Posada, D. ed.) 537:263-276, Springer, New York, NY.

- Jordan, 1. K. and Marifio-Ramirez, L. (2007) Evolutionary
genomics of gene expression, in Structural Approaches to
Sequence Evolution Molecules, Networks, Populations
(Bastolla, U.; Porto, M.; Roman, H.E. and Vendruscolo, M.
ed.), Springer, New York, NY.

- Mariio-Ramirez, L., Campbell, L. and Hu, J. C. (2003)
Screening peptide/protein libraries fused to the A repressor
DNA-binding Domain in E. coli cells, in Methods in
Molecular Biology: E. coli Gene Expression Protocols,
(Vaillancourt, P. ed.) 205:235-250, Humana Press, Totowa,
NJ.

- Marifio-Ramirez, L. and Hu, J. C. (2002) Using A
repressor fusions to isolate and characterize self-assembling
domains, in Protein-Protein Interactions: A Laboratory
Manual, (Golemis, E., and Serebriiskii, I. ed.) 375-394, Cold
Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

- Lecturer: Practical Course "Bioinformatics: Computer
Methods in Molecular Biology" - International Centre for
Genetic Engineering and Biotechnology (ICGEB). Trieste,
Italy

- Lecturer: Computational Genomics - School of Biology -
Georgia Institute of Technology. Atlanta, Georgia

- Lecturer: Curso de Bioinformatica: Fundamentos para el
manejo y uso de datos biologicos. Monteria, Colombia

Leonardo Marifio-Ramirez, Ph.D. — 3/4/2013
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2006

2005

2003 — Present

2011 — Present

2011 — Present

2010 — Present

2008 — Present
2008 — Present

2007 — Present

2007 — Present
2007 — 2008

2006 — 2009

2005 — Present

2005 — Present

2005 — Present

2002 — Present

2002 — Present

2002 — Present

- Lecturer: Curso Internacional: Manejo de Herramientas
Basicas en Bioinforméatica. Bogotd, Colombia

- Lecturer: Curso Internacional de Bioinformatica: Manejo
de las herramientas basicas. Bogota, Colombia

Study group leader: NCBI Perl programming language study

group
Editor: PLoS ONE (Public Library of Science)

Steering Committee — NIH Staff Scientists/Staff Clinicians
Organization

Founding Member: PanAmerican Bioinformatics Institute.
(http://panambioinfo.org/)

Editor: DATABASE (Oxford Journals)

Member of the External Advisory Board for the Professional
MS Bioinformatics Program. School of Biology. Georgia
Institute of Technology

Ad hoc Grant Reviewer: The National Science Foundation
(NSF)

Editor: GENE (Elsevier)

Steering Committee — NIH Staff Scientists/Staff Clinicians
Organization

Program Committee — Intelligent Systems for Molecular
Biology (ISMB)

- Reviewer for papers in scientific meetings: ISMB, Pacific
Symposium on Biocomputing (PSB), VirtualGenomics

- Ad hoc Grant Reviewer: The Kentucky Science and
Engineering Foundation (KSEF)

- Reviewer for scientific journals:

Bioinformatics, Nucleic Acids Research (Oxford University
Press)

Biochemistry (American Chemical Society)

Gene, Genomics (Elsevier)

Genome Dynamics (Karger)

BioMed Central

Biomédica (Instituto Nacional de Salud — Colombia)

Analysis of Gene Regulatory Sequences from Whole
Chromosomes and Genomes. Funded by NIH Intramural
research project Z01 LM000084.

Structural and Functional Analysis of Protein Sequence
Families. Funded by the NIH Intramural research project
Z01 LMO000071.

Analysis of Repeated Elements in the Human Genome.
Funded by the NIH Intramural research project Z01
LMO000092.

Leonardo Marifio-Ramirez, Ph.D. — 3/4/2013
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2003 — Present

2001 — 2002

2005

2005

2002

The Analysis of Signal Elements in Promoter Sequences.
Funded by the NIH Intramural research project Z01
LMO091704.

Protein Self-Assembly in Model Microorganisms. Funded by
the NIH grant ROIGMO063652.

The Histone Database -
http://research.nhgri.nih.gov/histones/

A-GLAM -
ftp://ftp.ncbi.nih.gov/pub/spouge/papers/archive/ AGLAM/
Doodle Database - http://dimer.tamu.edu/doodle/

Leonardo Marifio-Ramirez, Ph.D. — 3/4/2013



Titulos profesionales
Microbiologia, pregrado - Universidad de Los Andes - 1992

Bioquimica, doctorado - Texas A&M University - 2002



UNIVERSIDAD DE LOS ANDES

SANTAFE DE BOGOTA,D.C.

REPUBLICA DE COLOMBIA
MINISTERIO DE EDUCACION NACIONAL

El Consejo Directivo y el Rector de la Universidad de los Andes
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Teonarys MWaring Ramirez
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Gexag AR Unitrersity

Qo all to wham these preseuts may rome (Breeting
Be it Wunpwon that '

Leonardo Marino-Ramirey

hating completed the studies and satisfied the reguirements for the Begree of

Aoctor of Philosophy

- has acrordingly been admitted fo that Eegree tith all the honors, rights and
privileges belonging thereto.

(Biven under the seal of the @niversity at ollege Station, Texas, on the
tuenty-first day of Berewber, A. 8., oo thousand and Hoo. '

Qlpir, Bourd of Regents

resident of iversity




TEXAS A&M UNIVERSITY
Office of the Vice President for Research

Office of Graduate Studies
1113 TAMU » College Station, Texas 77843-1113
(979) 845-3631
FAX (979) 845-1596

22 OCTOBER 2002

To WHoM IT MAY CONCERN:

This is to certify that the student named below has completed all
requirements for the degree indicated.

LEONARDO MARINO-RAMIREZ
NAME

DOCTOR OF PHILOSOPHY
DEGREE

BIOCHEMISTRY
MAJOR

21 DECEMBER 2002
CONFERRAL DATE

(e

John R. Giardino
Dean of Graduate Studies

OGS 09



Certificados de vinculacion laboral en Colombia (Regreso al pais)

Corporaciéon Colombiana de Investigacién Agropecuaria - Corpoica

Centro Colombiano de Gendmica y Bioinformatica de Ambientes Extremos — Gebix
Fulbright - Colombia

Fundacioén Instituto de Inmunologia de Colombia - FIDIC



Corporacion Colombiana de Investigacién Agropecuaria

Sede Central

Contrato No. 5032

CONTRATO INDIVIDUAL DE TRABAJO A TERMINO INDEFINIDO CON
SALARIO INTEGRAL, CELEBRADO EN LA CORPORACION COLOMBIANA DE
INVESTIGACION AGROPECUARIA, CORPOICA

Entre los suscritos a saber, ARTURO ENRIQUE VEGA VARON, identificado con la
cedula de ciudadania No. 6.892. 249 de Monteria, actuando en su condicién de
Director Ejecutivo de fa Corporacién Colombiana de Investigacion Agropecuaria
CORPOICA, Entidad de participacién mixta, con personeria juridica otorgada por la
Alcaldia Mayor de Bogota, segun Resolucion especial No. 141 del 7 de abril de
1993, quien en adelante se denominara CORPQOICA, por una parte y por la ofra
LEONARDO MARINO RAMIREZ, mayor de edad, identificado como aparece al pié
de su firma, quien en adelante se llamard EL EMPLEADQO, se ha celebrado el
contrato individual de trabajo que consta de las sigufentes Clausulas: PRIMERA - EL
EMPLEADQ se obliga a laborar para la Corporacion a partir del 01 de septiembre
de 2008, como Investigador Ph.D Asociado - Laboratorio de Genética Molecular
y Bioindustria - CBB, con cargo al centro de costos (311-1240-001-1460-00),
desarroflando las actividades que para dicho cargo sefiala el manual de descripcion
de cargos y naturaleza de las dependencias y en la forma que le indique su superior
inmediato., SEGUNDA - La sede de EL EMPLEADO seréd en el Centro de
Investigacién Tibaitata - Mosquera. Paragrafo. No obstante lo anterior, podran
convenir las partes que el frabajo se preste en lugar distinto del inicialmente
contratado, siempre que tales trasfados no desmejoren fas condiciones faborales o
de remuneracion del empleado o implique perjuicios para él. Los gastos gue se
originen con el traslado seran cubfertos por la Corporacion de conformidad con el
numeral 8o. del articulo 57 del Cédigo Sustantivo del Trabajo. El trabajador se obliga
a aceptar los cambios de cargo u oficio o lugar de trabajo que decida la Corporacion
dentro de su poder subordinante siempre gue respete las condiciones laborales def
empleado y no se le causen perjuicios, todo elfo sin que se afecte el honor, la
dignidad, y los derechos minimos del empleado de conformidad con el articulo 23 del
Codigo Sustantivo del Trabajo, modificado por el articulo 10. de la Ley 50 de 1990.
TERCERA.- EL EMPLEADQO acepta los Reglamentos de concurso de méritos y los
sistemas de evaluacion que adopte la Corporacion para permanecer en el empleo,
asi como los respectivos reglfamentos de trabajo y seguridad de la Corporacion. Las
partes estan de acuerdo en que todos los reglamentos y sistemas de evaluacién de
la Corporacion forman parte de este contrato. CUARTA.- La Corporacion pagara a
EL EMPLEADQO por la prestacion de sus servicios la suma de Seis Millones
Quinientos Diez Mil Pesos mensuales ($6.510.000) mensuales, como salario
integral, el cual retribuira el trabajo ordinario y compensara de antemano el valor de
prestaciones, recargos o beneficios fales como el correspondiente al trabajo
nocturmo extraordinario o al dominical y festivo, el de primas legales,

extralegales, cesantias y sus Intereses, subsidios y suministros en O]
especie, vy en gastos generales, las que se incluyan para los empleados de la DLOGIEA
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Corporacion, excepfo las vacaciones. QUINTA.-El empleado se obliga a laborar la
Jjomada ordinania en los términos y dentro de las horas sefialadas por la Corporacion,
pudiendo ésta hacer ajustes o cambios de horario cuando lo estime conveniente. Por
el acuerdo expreso o tacito de las partes podran repartirse las horas de la jomada
ordinania en la forma prevista en el articulo 164 del Cddigo Sustantivo del Trabajo
modificado por el articulo 23 de la Ley 50 de 1990, teniendo en cuenta que los
tiermpos de descanso entre las secciones de la jormada no se computan denlro de la
norma segun el articulo 167 del Codigo Sustantivo del Trabajo. SEXTA.- Los
primeros sesenta (60) dias del presente contrato se consideran como periodo de
prueba y, por consiguiente, cualquiera de las partes podra terminar el contrato
unilateralmente, en cualquier momento durante dicho periodo. Vencido este, la
duracion del contrato sera a término Indefinido, mientras subsistan las causas que
le dieron ongen y la matena del trabajo. SEPTIMA.- EL EMPLEADQO se compromete
a respetar todos los derechos de propiedad intelectual y/o industrial sobre fos
resuftados que se obtengan en desarrollo de las actividades derivadas de su
vinculo laboral con la Corporacion. Paragrafo Primero: De conformidad con el
articulo 539 del Cédigo de Comercio y demas disposiciones generales y especiales
pertinentes, los derechos sobre propiedad intelectual, es decir, las patentes de
invencion, los descubrimientos, modelos de utifidad y disefios industriales, etc, son
de propiedad exclusiva de la Corporacion, en consecuencia Corpoica, tendra el
derecho de hacer patentar a su nombre o a nombre de terceros, los inventos o
mejoras, respetandose el derecho del empleado a ser mencionado como inventor
en la patente, si asi lo desea, sin que Corpoica quede obligada al pago de
compensacion alguna. Paragrafo Segundo: EI EMPLEADQO se compromete a
suscribir el Contrato de Cesion de Derechos Patnmoniales de Autor, como también
todos aquellos documentos, medios y poderes necesarios, que la Corporacién
requiera para adelantar las gestiones ante la Supenntendencia de Industria y
Comercio o la Entidad que haga sus veces, a efectos de obtener los derechos de
propiedad intelectual o beneficios comerciales, denvados del desarrollo de las
actividades como trabajador de Corpoica. Paragrafo Tercero. El EMPLEADOQO se
obliga a no divulgar comunicaciones o publicaciones orales o escritas, que tiendan
a impedir o entorpecer la peticion de patentes o registros, salvo autonzacion
expresa y escrita otorgada por fa Corporacion. OCTAVA.- EL. EMPLEADQO se
compromete a mantener confidencialidad sobre toda la informacién cientifica,
tecnica, financiera, comercial o de cualquier otra indole, que le sea suministrada o
que conozca directa o indirectamente en desarrollo de [as actividades como
trabajador de la Corporacion Colombiana de Investigacion Agropecuaria, Corpoica.
NOVENA .- Son justas causas para dar por terminado este contrato las enumeradas
en el Codigo Sustantivo del Trabajo y ademas por parte de la Corporacién las
siguientes que para tal efecto se califican como graves: a) La violacién por parte del
empleado de cualquiera de sus obligaciones legales coniractuales o reglamentarias
y especialmente las contenidas en el numeral 5 del articulo 69 del Reglamento
Intemo de Trabajo de la Corporacién aprobado por el Ministerio de Trabajo y
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Segundad Social. b) No obtener en las evaluaciones periédicas de sus actividades
la calificacion exigida en los reglamentos. ¢) La ejecucion por parte del empleado de
labores remuneradas al servicio de lerceros sin autonzacién escrita de la
Corporacion. d) La revelacion o utifizacion de secretos y datos reservados de la
Corporacién a los que tenga acceso con ocasion del desempefio de sus labores. e)
Presentarse embriagado o ingerir bebidas embriagantes en el sitio de trabajo atin
por pnmera vez. DECIMA.- El presente conlrato reemplaza en su integridad y deja
sin efecto cualquier ofro contrato verbal o escrito, celebrado entre las partes con
anteniondad.

Para constancia se firma en Bogota, a los veintidés (22) dias del mes de febrero
de 2008.

EL EMPLEADOR, _ EL EMPLEADO,
&\ ) x /
= R LY mo[d M IR0 K :

ARTURO ENRIQ EGA VARON LEONARDO MARINO RAMIREZ
Corpoica \ C.C.No. 39'570 Qg2

Vo Bo Vo. Bo. Paula Buka Galiano

Carios Fernariig
3 Subdirectora Financiera Nacionat

SecrefarioBen

Ve.Bo. Jairo Orkd Castellanos
Director Dpto. de Gestién Humana

Vo. Bo. Vit Mbio ’
Directora Dpto. Yuridico

Elabars: Man‘éM
f ivo i -

pfo. Gestitn Humana
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CONTRATO DE PRESTACION DE SERVICIOS No. 031-2009
CELEBRADO ENTRE LA UNION TEMPORAL CENTRO COLOMBIANO DE
GENOMICA Y BIOINFORMATICA DE AMBIENTES EXTREMOS - GeBiX Y
LEONARDO MARINO RAMIREZ

Entre los suscritos MARIA MERCEDES ZAMBRANO EDER, mayor de edad,
identificada con cédula de ciudadania No. 31.874.035 expedida en Cali, quien obra
en nombre y representacion de la UNION TEMPORAL CENTRO COLOMBIANO DE
GENOMICA Y BIOINFORMATICA DE AMBIENTES EXTREMOS - GeBiX, y quien
para los efectos del presente contrato se denominard GeBiX y LEONARDO MARINO
RAMIREZ, identificado con cédula de ciudadania No. 79.520.882 expedida en
Bogota, quien obra en su propio nombre y quien en adelante se llamara EL
CONTRATISTA, han acordado celebrar el presente Contrato de Prestacién de
Servicio que se regira por las siguientes clausulas:

PRIMERA.- OBJETO: EL CONTRATISTA se compromete a prestar sus servicios
profesionales como Profesional en Bioinformatica para asesorar a GEBIX en el
montaje de su plataforma Bioinformatica, en el marco del proyecto “Conformacion de
una plataforma en metagendmica y bioinformatica para la caracterizaciéon y el
aprovechamiento de recursos genéticos de ambientes extremos” ejecutado por
GeBiX.

SEGUNDA.- OBLIGACIONES DEL CONTRATANTE:

1. Suministrar oportunamente la informacion y documentacion requerida por EL
CONTRATISTA a fin de dar cumplimiento a lo estipulado en este contrato.

2. De requerirse, permitir y hacer los esfuerzos necesarios para que el contratista
se relina e interactle oportunamente con los directores de los grupos de
investigacion de GeBiX.

3. Desembolsar lo acordado dentro de este Contrato de Prestacion de Servicios, en
la forma y fechas senaladas, previa presentacion de la respectiva cuenta de
cobro.

4. Suministrar al CONTRATISTA, en caso de ser necesario, pasajes aéreos o
terrestres dentro del pais, estadia y demas gastos de viaje, que requiera para el
cumplimiento de las obligaciones adquiridas en el presente Contrato.

TERCERA.- OBLIGACIONES DEL CONTRATISTA:

1. Brindar asesoria general a los grupos de GEBIX trabajando en bioinformatica.

2. Ayudar en la definicidon de los flujos de trabajo para analisis de diversidad y para
analisis de secuencias metagendmicas.

3. Asesorar en el analisis de los datos metagendémicos generados.

4. Asistir a las reuniones programadas por el grupo de bioinformatica de Gebix v,
de ser necesario, a reuniones generales de GEBIX.

5. Estar en disposicion de trasladarse temporalmente fuera de su domicilio
contractual, en caso de ser necesario.

6. Afiliarse y aportar a una Entidad Promotora de Salud y a un Fondo de Pensiones
como independiente durante la duracion del presente contrato.

7. Presentar las respectivas cuentas de cobro.

Centro Colombiano de Gendémica y Bioinformatica de Ambientes Extremos
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CUARTA.- EXCLUSIONES: El contratista no asumira ninguna responsabilidad por
eventuales infracciones o violaciones a derechos de propiedad intelectual en que
pudieren incurrir las personas juridicas y naturales que conforman la Unidén Temporal
GeBiX. El contrato no implica una asesoria juridica general, es decir en las diversas
areas del derecho; lo anterior, sin perjuicio de que el contratista colabore emitiendo
opiniones, y conceptos en las materias consultadas al Grupo de Investigacion PLEBIO
relacionadas con el objeto de la Uniéon Temporal GeBiX.

SEXTA.- DURACION: El presente Contrato de Prestacién de Servicios tendra una
duracion de ocho (8) meses a partir de la suscripcién del contrato.

SEPTIMA.- VALOR DEL CONTRATO Y FORMA DE PAGO: El valor del presente
Contrato de Prestaciéon de Servicios es la suma de OCHO MILLONES NOVECIENTOS
OCHENTA Y CINCO MIL SEISCIENTOS PESOS ($8,985.600,00) MONEDA CORRIENTE,
que se cancelardn en ocho (8) desembolsos mensuales, cada uno de UN MILLON
CIENTO VEINTITRES MIL DOSCIENTOS PESOS ($1.123.200,00) MONEDA CORRIENTE,
sujetos a la entrega de un informe de actividades. El ultimo desembolso estara sujeto
a la entrega de un informe final de las actividades realizadas, junto con los soportes
generados de las obligaciones del contrato. PARAGRAFO 1.- Cada uno de los
desembolsos requiere para su cancelacion de la presentacion de la cuenta de cobro
acompanada de la certificacién sobre el cumplimiento de las obligaciones a cargo del
CONTRATISTA, otorgada por el supervisor del contrato, asi como del recibo vigente
de cotizaciéon al Sistema General de Salud y Pensiones. PARAGRAFO 2.- GeBiX
pagara la suma acordada en este contrato dentro de los treinta (30) dias siguientes a la
presentacion de la cuenta de cuenta de cobro por parte del CONTRATISTA.
PARAGRAFO 3.- GeBiX deja claro que de conformidad con la legislacion vigente al
respecto, las personas naturales que presten sus servicios a las entidades del sector
privado bajo la modalidad de contrato de prestacion de servicios, estan obligados a
afiliarse y aportar al Sistema General de Salud y Pensiones. PARAGRAFO 4.- En el
evento de ser necesario el desplazamiento de EL CONTRATISTA a una ciudad
diferente, por razdén o en ocasion de las actividades contratadas, GeBiX asumira los
gastos de viaje, viadticos y pasajes para realizar las actividades mencionadas
anteriormente. Para el desembolso de los gastos de desplazamiento, EL
CONTRATISTA debera presentar la solicitud con visto bueno del ordenador del gasto,
dentro de los cinco (5) dias habiles siguientes al regreso, EL CONTRATISTA, debera
legalizar los gastos de viaje anexando los soportes correspondientes.

OCTAVA.- SUSPENSION TEMPORAL: De comUn acuerdo entre las partes, se podra
suspender la ejecucidén del contrato, mediante la suscripcion de acta, sin que para
efectos del plazo extintivo del contrato se compute el tiempo de suspension, siempre
y cuando esta suspension no exceda el 30% del tiempo pactado para la asesoria. En
caso de suspenderse el contrato por cualquier causa, EL CONTRATISTA tendra
derecho a la remuneracidn que se hubiere causado hasta la fecha de la suspension,
la que se determinara de conformidad con el servicio que hubiere realizado hasta esa
fecha.

NOVENA.- TERMINACION ANTICIPADA O PRORROGA: El presente contrato
podra darse por terminado por mutuo acuerdo entre las partes, expresado por
escrito, o en forma unilateral por cualquiera de ellas, manifestando la parte que
desea hacerlo a la otra, su intencién de darlo por terminado, con una antelacién no
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inferior a treinta (30) dias, por incumplimiento de cualquiera de las obligaciones
derivadas del contrato, o en uno cualquiera de los casos siguientes: 1. Suspension
total o parcial del proyecto sin justa causa imputable a la otra parte; 2.
Incumplimiento de wuna o cualquiera de las obligaciones que asumen los
contratantes; 3. Por acuerdo mutuo entre las partes; 4. Por no afiliaciéon o
desafiliacion de las entidades de seguridad social como independiente por parte de
EL CONTRATISTA; 5. Por realizacion de programa de estudios en el exterior.

DECIMA.- EL CONTRATISTA serd responsable de los dafios y perjuicios que se
causen a GeBiX o a terceros, con motivo de la ejecucion de los trabajos contratados,
cuando resulten de: 1. Incumplimiento a los términos y condiciones establecidos en
el presente Contrato; 2. Inobservancia a las recomendaciones que GeBiX le haya
dado por escrito; 3. Actos con dolo, mala fe o negligencia; 4. La pérdida de material,
o detrimento grave en los equipos que le hayan sido dados para el correcto
desarrollo de la labor contratada; 5. En general por actos u omisiones graves
imputables a EL CONTRATISTA o al personal que este llegare a emplear.

DECIMA PRIMERA.- INDEPENDENCIA DEL CONTRATISTA: EL CONTRATISTA
actuara por su propia cuenta, con absoluta autonomia y no estard sometida a
subordinacién laboral alguna con GeBiX. Sus derechos se limitaran, de acuerdo con
la naturaleza del presente Contrato de Prestacion de Servicios a exigir el pago de lo
estipulado por la prestacion de sus servicios. Queda claramente entendido que no
existira relacion laboral alguna entre GeBiX y EL CONTRATISTA, o el personal que
ésta utilice en la ejecucion del objeto del presente Contrato.

DECIMA SEGUNDA.- SUPERVISION: El presente Contrato de Prestacién de
Servicios estara bajo la Supervision del Dr. HOWARD ARMANDO JUNCA DIAZ PhD o
guien haga sus veces. Dicha supervision comprende, entre otras, el recibo y la
verificacién de los servicios contratados.

DECIMA TERCERA.- CESION DEL CONTRATO: EL CONTRATISTA no podra ceder
parcial ni totalmente la ejecucién del presente Contrato a un tercero salvo previa
autorizacién expresa y escrita de GeBiX.

DECIMA CUARTA.- PROPIEDAD INTELECTUAL: Los derechos patrimoniales de
autor sobre los documentos, ya sean éstos impresos o archivos magnéticos o
electronicos, generados como resultado de la ejecucién del objeto del presente
contrato de prestacion de servicios, perteneceran a GeBiX, quién podra, en
consecuencia, publicarlos, reproducirlos, cederlos y en general disponer de ellos a
cualquier titulo. Para estos efectos el contratista se compromete a cumplir las
formalidades requeridas para la transferencia de derechos patrimoniales conforme a
la legislacion vigente.

DECIMA QUINTA.- CONFIDENCIALIDAD: EL CONTRATISTA se comprometa a
guardar absoluta reserva acerca de toda la informacién relativa a los procedimientos
y procesos técnicos o cientificos que en desarrollo del objeto o de las funciones
adelante GeBiX. Esta obligacion de confidencialidad estard a cargo del
CONTRATISTA durante el término de duracién del contrato y un (1) afio mas. En
consecuencia, EL CONTRATISTA se obliga a no utilizar ni divulgar para fines distintos
a los previstos en este contrato los resultados de su trabajo conseguidos en la
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ejecucion del mismo, como tampoco la informacidon que conozca con ocasion del
contrato, sin la previa autorizacidon expresa y escrita que para cada caso reciba de
GeBiX y de COLCIENCIAS, pues se considera que todos los documentos empleados e
informacion que se produzca directa y exclusivamente en desarrollo del presente
contrato perteneceran, en cuanto a derechos patrimoniales y de explotacion econdmica
se refiere, a las instituciones que conforman la Unidn Temporal en proporcidon a su
participacion real efectiva en la realizacion de los trabajos que resulten patentables. La
confidencialidad a que se refiere esta clausula se mantendra hasta que la informacion
adquiera el caracter de publica.

Sin embargo el contratista podra utilizar los resultados de su trabajo como insumos
para analisis o estudios de caso en proyectos de investigacién y publicacion
académicos. En todo caso debera dar los reconocimientos institucionales
correspondientes e informar a GeBiX, con copia de las publicaciones.

DECIMA SEXTA.- SOLUCION DE CONFLICTOS: Las partes convienen que en el
evento en que surja alguna diferencia entre las mismas, por razéon o en ocasion del
presente Contrato, en que deba acudirse a la justicia ordinaria, previamente se
acudira al Centro de Conciliacion de la Camara de Comercio de Bogota.

DECIMA SEPTIMA.- DOMICILIO CONTRACTUAL: Para todos los efectos legales a
que hubiera lugar, las partes acuerdan como domicilio contractual la ciudad de
Bogota, y las notificaciones seran recibidas por las partes en las siguientes
direcciones: Por GeBiX, en la carrera 5 No. 66A-34 y por EL CONTRATISTA en la
Carrera 28A No. 50-77 Apto. 301, en la ciudad de Bogota.

DECIMA OCTAVA.- REQUISITOS DE PERFECCIONAMIENTO: El presente
Contrato se perfeccionaré con la suscripcion del mismo por las partes, y la
presentacion del Registro Unico Tributario - RUT por parte del CONTRATISTA.

De conformidad con lo anterior, las partes suscriben el presente documento, en dos
copias del mismo valor y tenor, en la ciudad de Bogota D.C., a los veinte (20) dia del
mes de abril de 2009.

Por GeBiX EL CONTRATISTA

O/'éOMMn}O '[%wai?)o ©.

MARIA MERCEDES ZAMBRANO EDER LEONARDO MARINO RAMIREZ
Representante Legal C.C. No. 79.520.882 de Bogota
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Bogota D.C., 13 de septiembre de 2010

Doctor

LUIS RICARDO FERNANDEZ RESTREPO
Coordinador

Oficina de Asuntos Consulares

Ministerio de Relaciones Exteriores

Ciudad

Asunto: OAJ No. 66042

De manera atenta confirmamos que, el pasado 15 de enero de 2007 respondimos el oficio de
referencia OAJ No. 66042, en el cual informabamos que el sefior LEONARDO MARINO
RAMIREZ, identificado con c.c. 79.520.882, fue beneficiario del Programa Fulbright
Colciencias — IIE, afio 1997. En dicha comunicacion, también manifestabamos que el sefior
Marifio Ramirez debia cumplir con el requisito estipulado por el Programa Fulbright de
permanecer en Colombia por un periodo minimo de dos afios, después de la fecha de
terminacion de su programa en Estados Unidos.

Posterior a la mencionada comunicacion, el 04 de septiembre de 2010, recibimos los soportes
a traves de los cuales se certifica que el sefior Marifio Ramirez regresé a Colombia después
de finalizar su beca y trabajo con la Corporacién Colombiana de Investigacion Agropecuaria -
Corpoica de forma continua desde septiembre de 2008 hasta la actualidad a través de una
contrato indefinido. Por lo tanto, informamos al Ministerio de Relaciones Exteriores, que el
sefior LEONARDO MARINO RAMIREZ ya cumplié con el requisito estipulado y anteriormente
descrito, y por lo tanto a esta fecha, Fulbright Colombia No Obijeta la estadia de este
ciudadano en los Estados Unidos.

Atentamente,

A7)

! 7
AN

/,

ANN C. MASON
Directora Ejecutiva

Elaboro. LMDCC

c.c. Embajada de Estados Unidos
c.c. Leonardo Marifioc Ramirez

www. fulbright.edu.co
Calle 3/ No. 15- 73 = Tol: (571)232 4326 » Bogota. Colombin = folbeotetul s Ntk
Comisién para Intercambio Educativo entre los Estados Unidos de América y Colombia



FUNDACION INSTITUTO DE INMUNOLOGIA DE COLOMBIA

FIDIC

NIT 830084143-6

DAFF-3300-263-0099
Abril 15 de 2013

LA DIRECTORA ADMINISTRATIVA Y FINANCIERA DE LA FUNDACION
INSTITUTO DE INMUNOLOGIA DE COLOMBIA —FIDIC-

CERTIFICA

Que el(a) BIOINFORMATICO LEONARDO MARINO RAMIREZ, identificado(a) con CC No.
79.520.882 Expedida en Bogotd, estuvo vinculado(a) a esta institucion mediante la modalidad
de Contrato de Prestacién de Servicios Profesionales Independientes, como Consultor del
Centro, bajo las siguientes condiciones:

Contrato No. 2010-0098
Contrato de Prestacion de Servicios Profesionales Independientes
Objeto: Prestar los servicios de consultoria y capacitacion en el area de
Bioinformatica para el montaje y expansion su plataforma Bioinformatica,
en el marco del proyecto “Validacion de una prueba seroldgica para
identificacion de anticuerpos anti-VPH e infeccién persistente por el virus
de papiloma humano en mujeres de escasos recursos y victimas del
conflicto armado”
Grupo Funcional: Biologia Molecular e Inmunologia
Fecha de Inicio: Octubre 1 de 2010
Fecha de Terminacion: Noviembre 30 de 2010
Obligaciones del e« Brindar asesoria general a los cientificos que conforman los grupos
consultor: funcionales que requieran de sus servicios trabajando en bioinformatica.
¢ Ayudar en la definicién de los flujos de trabajo para andlisis de
e secuencias presentes en el genoma de Plasmodium vivax y P. alciparum
de interés inmunoldgico.
e Asesorar en el analisis de los datos generados.
e Asistir a las reuniones programadas por los grupos de bioinformatica,
seguin disponibilidad.
e Dedicacion de 10 horas semanales.

Contrato No. 2011-0153
Contrato de Prestacion de Servicios Profesionales Independientes
Objeto: Prestar los servicios de consultoria y capacitacion en el area de
Bioinformatica para el montaje y expansion su plataforma Bioinformatica,
en el marco del proyecto “Plan de Fortalecimiento Institucional 2011-2013"
Grupo Funcional: Biologia Molecular e Inmunologia
Fecha de Inicio: Marzo 21 de 2011
Fecha de Terminacion: Octubre 20 de 2011

Cra. 50 #26-20 Bogotéa, Colombia
PBX: 315 8919 (57-1-)/ 324 4671-2 / 315 8920 Fax: (57-1)3244671 Ext. 108, A.A. 33086

www.fidic.org.co


http://www.fidic.org.co/

FUNDACION INSTITUTO DE INMUNOLOGIA DE COLOMBIA

Obligaciones del
consultor:

FIDIC

NIT 830084143-6

e Brindar asesoria general a los cientificos que conforman los grupos
funcionales que requieran de sus servicios trabajando en bioinformatica.

e Ayudar en la definicién de los flujos de trabajo para analisis de

e secuencias presentes en el genoma de Plasmodium vivax y P. alciparum
de interés inmunoldgico.

e Asesorar en el analisis de los datos generados.

e Asistir a las reuniones programadas por los grupos de bioinformatica,
segun disponibilidad.

e Dedicacién de 10 horas semanales.

Contrato No. 2012-0012

Contrato de Prestacion de Servicios Profesionales Independientes

Objeto:

Grupo Funcional:
Fecha de Inicio:

Fecha de Terminacion:
Obligaciones del
consultor:

Prestar los servicios de consultoria y capacitacion en el area de

Bioinformatica para el montaje y expansion su plataforma

Bioinformatica, en el marco del proyecto “Plan de Fortalecimiento

Institucional 2011-2013"

Biologia Molecular e Inmunologia

Enero 16 de 2012

Noviembre 15 de 2012

e Brindar asesoria general a los cientificos que conforman los
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We report the first whole-genome sequence of the Mycobacterium colombiense type strain, CECT 3035, which
was initially isolated from Colombian HIV-positive patients and causes respiratory and disseminated infec-
tions. Preliminary comparative analyses indicate that the M. colombiense lineage has experienced a substantial
genome expansion, possibly contributing to its distinct pathogenic capacity.

The genus Mycobacterium comprises nearly 150 species (2,
3), including a number of human pathogens that pose major
challenges to public health. Mycobacterium colombiense is a
slow-growing, urease-positive, nontuberculous mycobacte-
rium (NTM) that belongs to the Mycobacterium avium com-
plex (MAC). M. colombiense was originally isolated from
HIV-positive individuals in Bogotd, Colombia, and the pa-
tient isolates were determined to represent a distinct species
by virtue of sequence comparisons with closely related My-
cobacterium species (7). Since the discovery of this new
species in 2006, M. colombiense has been confirmed to cause
respiratory disease and disseminated infection in immuno-
compromised HIV patients, as well as lymphadenopathy in
immunocompetent children (1, 8). Nevertheless, very little
is currently known about the molecular mechanisms that
underlie M. colombiense infection and pathogenesis. We
have characterized the complete genome sequence of M.
colombiense in an effort to better understand its virulence
mechanisms.

The M. colombiense genome was sequenced by a whole-
genome shotgun strategy using Roche 454 GS-FLX titanium
pyrosequencing technology. A total of 720,174 sequence
reads were generated, with an average read length of 375 bp,
yielding more than 270 Mb of total sequence. This repre-
sents 45X coverage for the estimated 5.6-Mb genome size. A
de novo assembly of the 454 single-end data was created
using the Newbler assembler (Roche), version 2.6, resulting
in 27 large contigs with an Ny, of 436 kb. Genome annota-
tion was performed using the NCBI Prokaryotic Genomes
Automatic Annotation Pipeline (PGAAP), which produces
functional annotation using the NCBI nonredundant pro-
tein and protein cluster databases with functional domain
assignments for each protein by RPS-BLAST (5) against the
NCBI Conserved Domain Database (6). The M. colombiense

* Corresponding author. Mailing address: Computational Biology
Branch, Building 38A, Room 6S614M, 8600 Rockville Pike, MSC
6075, Bethesda, MD 20894-6075. Phone: (301) 402-3708. Fax: (301)
480-2288. E-mail: marino@ncbi.nlm.nih.gov.

genome was predicted to encode 5,230 coding sequences
(CDS).

M. colombiense was previously shown to be most closely
related to M. avium, based on 16S rRNA sequence analysis
along with DNA-DNA hybridization experiments (7). Here,
we show that M. colombiense is most closely related to M.
avium subsp. paratuberculosis (4) and confirm these results
via sequence comparisons of M. colombiense contigs against
the NCBI microbial sequence database. Despite the close
relationship between these two species, reference-based as-
sembly of the M. colombiense genome using M. avium subsp.
paratuberculosis produced a highly fragmented assembly,
with markedly lower quality than seen for the de novo as-
sembly (1,914 large contigs with an Ny, of 1,253), indicating
that numerous genome rearrangements have occurred since
the two species diverged. Furthermore, our characterization
of the M. colombiense genome shows it to be substantially
larger (5.6 Mb) than the genome of M. avium (4.8 Mb) and
to encode many more genes (5,230 versus 4,400). Sequence
alignments between the two species revealed that these dif-
ferences could be attributed to large genomic insertions
specific to the M. colombiense lineage. We hypothesize that
a genome expansion may have allowed for the elaboration of
novel pathways that contribute to the virulence of this
emerging opportunistic pathogen. Additional genomic and
functional analyses are needed to interrogate this hypothe-
sis.

Nucleotide sequence accession number. The M. colombiense
Whole Genome Shotgun project has been deposited at
DDBJ/EMBL/GenBank under the accession number
AFVW00000000.
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Abstract

Independent lines of investigation have documented effects of both transposable elements (TEs) and gene length (GL) on
gene expression. However, TE gene fractions are highly correlated with GL, suggesting that they cannot be considered
independently. We evaluated the TE environment of human genes and GL jointly in an attempt to tease apart their relative
effects. TE gene fractions and GL were compared with the overall level of gene expression and the breadth of expression
across tissues. GL is strongly correlated with overall expression level but weakly correlated with the breadth of expression,
confirming the selection hypothesis that attributes the compactness of highly expressed genes to selection for economy of
transcription. However, TE gene fractions overall, and for the L1 family in particular, show stronger anticorrelations with
expression level than GL, indicating that GL may not be the most important target of selection for transcriptional economy.
These results suggest a specific mechanism, removal of TEs, by which highly expressed genes are selectively tuned for
efficiency. MIR elements are the only family of TEs with gene fractions that show a positive correlation with tissue-specific
expression, suggesting that they may provide regulatory sequences that help to control human gene expression. Consistent
with this notion, MIR fractions are relatively enriched close to transcription start sites and associated with coexpression in
specific sets of related tissues. Our results confirm the overall relevance of the TE environment to gene expression and point
to distinct mechanisms by which different TE families may contribute to gene regulation.

Key words: gene expression, gene regulation, selection hypothesis, genomic design hypothesis, L1, MIR.

Introduction scription. Subsequently, the relationship between gene
length (GL) and expression level was confirmed by a num-
ber of studies, providing support for the selection hypoth-
esis (Eisenberg and Levanon 2003; Urrutia and Hurst 2003;
Comeron 2004; Chen et al. 2005; Seoighe et al. 2005; Li
et al. 2007).

In 2004, Vinogradov (2004) also observed that compact
genes were more highly expressed, but he offered a different
explanation for this trend. Vinogradov proposed the “geno-

The relationship between gene architecture and gene ex-
pression has been and remains a subject of continuing in-
terest for genome analysis. In a pioneering study, Castillo-
Davis et al. (2002) observed that, for human and worm
genes, intron length was negatively correlated with the
level of expression. In other words, shorter genes were
found to be expressed at higher levels and longer genes

at lower levels. To. explain this t.rend, the. authors formu- mic design” hypothesis, which postulates that the shorter
lated the “selection hypothesis” (Castillo-Davis et al. length of highly expressed genes is better explained by
2002). This hypothesis posits that highly expressed genes the fact that these genes also tend to be broadly expressed
are shorter due to selective forces that operate in favor of across numerous tissues and thus have simpler regulation,
minimizing the energy and time expended during tran- and require fewer regulatory sequence elements, than

© The Author(s) 2011. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/
2.5), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
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genes expressed in a more narrow tissue-specific fashion. In
other words, the relative paucity of regulatory elements in
broadly expressed genes explains their shorter average
length. The genomic design hypothesis rests on the notion
that the apparent correlation between GL and the level of
expression actually reflects a relationship between GL and
the breadth of expression, that is, the number of tissues
in which a gene is expressed.

The selection hypothesis and the genomic design hypoth-
esis make distinct testable predictions regarding the rela-
tionship between GL and gene expression. The selection
hypothesis predicts the strongest correlation between GL
and the overall expression level, whereas the genomic de-
sign hypothesis predicts the strongest correlation between
GL and the breadth of expression. A recent study used these
predictions to evaluate the competing hypotheses and
found that the selection hypothesis serves as the best expla-
nation for the relationship between GL and expression (Carmel
and Koonin 2009).

While the aforementioned studies were ongoing, there
was an independent line of research investigating the rela-
tionship between gene architecture and gene expression
from a different perspective. In eukaryotic genomes, and
particularly for mammalian genomes, gene architecture is
substantially influenced by the presence of transposable el-
ement (TE)-derived sequences. TE-derived sequences are
extremely abundant in mammalian genomes; at least
45% of the human genome is made up of TE sequences
(Lander et al. 2001; Venter et al. 2001). In addition, TE se-
guences are nonrandomly distributed across genomes. In
the human genome, Alu (SINE) elements are enriched in
GC- and gene-rich regions, whereas L1 (LINE) elements
are enriched in low-GC and gene-poor regions (Smit
1999; Lander et al. 2001). Finally, individual genes can vary
tremendously with respect to the amount and identity of TE
seqguences that they harbor.

Over the last several years, a series of studies have called
attention to a relationship between the TE environment in
and around genes and the level and breadth of gene expres-
sion. In 2003, the human genome sequence was used
together with expression data to construct a human tran-
scriptome map (Versteeg et al. 2003). This map identified
colocated clusters of highly expressed genes with specific
genomic characteristics. These clusters were gene dense,
had high GC content, were enriched for SINEs, Alu elements
in particular, and had low LINE densities. The same study
found clusters of weakly expressed genes with low SINE
and high LINE densities. Shortly thereafter, Han et al.
(2004) confirmed that the most highly expressed human
genes were depleted for L1 elements and demonstrated
a mechanism that could partially explain this pattern. They
showed that L1 elements can disrupt transcriptional elonga-
tion based on the presence of strong polyA signals in their
sequences.

Kim et al. made an important contribution to this body of
work by distinguishing between TE effects on the level of ex-
pression and the breadth of expression (Kim et al. 2004). They
measured overall expression level as the peak expression (PE)
over all tissues and breadth of expression (BE) as the number
of tissues in which a gene is expressed over some basal
threshold. Their work revealed that Alu element gene densi-
ties are more highly correlated with BE, whereas L1 densities
are most negatively correlated with PE. These results sug-
gested that different families of TEs may have specific effects
on different aspects of gene expression. Consistent with
these results, Eller et al. showed that highly and broadly ex-
pressed housekeeping genes can be distinguished by their TE
content, being primarily enriched for Alus and depleted for
L1s (Eller et al. 2007). In addition to the level and breadth
of expression, the TE environment of mammalian genes
has also been related to expression in cancer tissues (Lerat
and Semon 2007) and the evolutionary divergence of gene
expression (Pereira et al. 2009).

As of yet, no one has attempted to consider these two areas
of investigation together: 1) the relationship between GL and
expression and 2) the relationship between TE environment
and gene expression. In this study, we attempt to disentangle
the effects of GL and TE environment on gene expression and
to evaluate the relative influences of each on expression. Hav-
ing considered their effects separately, we then more thor-
oughly evaluate the connections between gene architecture
and the selection versus genomic design hypotheses.

Materials and Methods

Defining Gene Loci

To accommodate alternative splice variants of human genes
and compute TE fractions for specific loci, we define genes
here as distinct transcriptional units (TUs)—genomic regions
encompassing all overlapping transcripts from the start of the
5’-most exon to the end of the 3’-most exon (supplementary
fig. STA, Supplementary Material online). To that end, we
downloaded RefSeq annotations for the March 2006 build
of the human genome reference sequence (National Center
for Biotechnology Information [NCBI] build 36.1; University of
California—Santa Cruz [UCSC] hg18) from the UCSC Genome
Browser (Karolchik et al. 2004; Rhead et al. 2010). A total of
32,128 RefSeq transcripts were merged into 19,123 TUs that
represent distinct gene loci.

Determining Genic and Intergenic TE Fractions

To determine the fractions of human genes (TUs) that
are made up of TE sequences, human TEs were broken
down into six of the major human TE classes or families
according to the Repbase classification system (Jurka
et al. 2005; Kohany et al. 2006)—Alu, MIR, L1, L2, DNA
and LTR (long terminal repeat). RepeatMasker (http:/
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www.repeatmasker.org) annotations of the genomic coor-
dinates of these TEs were used to map them onto their
colocated genes. For each TE type, its fraction in a gene
was computed as the number of base pairs occupied by
a TE as a fraction of all base pairs in the gene. For each hu-
man gene, its intergenic region was taken as the union of
the regions upstream of the transcription start site (TSS) and
downstream of the termination site to the genomic mid-
point between the adjacent upstream and downstream
genes. TE intergenic fractions were then calculated in the
same way as for TE genic fractions based on these genomic
coordinates.

Gene Expression Data

To measure gene expression in different tissues, we used the
Gene Expression Atlas from the Genomics Institute of the
Novartis Research Foundation, which consists of Affymetrix
microarray gene expression values for 44,776 probe sets
across 79 human tissues (Su et al. 2004). Affymetrix probe
sets were mapped onto their corresponding TUs based on
their genomic location coordinates. As suggested previously
(Stalteri and Harrison 2007), probes that mapped to more
than one TU were discarded, and for TUs with more than
one mapped probe, the average expression level per tissue
was used. This resulted into a final data set of 15,658 TUs to
which expression data could be assigned. Expression data
are represented as signal intensity units based on the Affy-
metrix MAS4 processing and normalization algorithm suite.

Measurement of GL and Gene Expression Param-
eters

For each TU, the GL was calculated by simply subtracting its
start coordinate along the chromosome from the end coor-
dinate and then subjecting the difference to a log2 transfor-
mation. The microarray expression data described above
were used to calculate three measurements of gene expres-
sion: peak expression (PE), breadth of expression (BE) and
tissue-specificity (TS). To obtain PE, the signal intensity value
from the tissue where the TU is most highly expressed was
selected for each TU and subjected to a log2 transformation
to accommodate the vast disparity (range = 197,652.4 sig-
nal intensity units) in the peak levels of expression between
TUs. For each TU, the BE was calculated as the number of
tissues in which the expression of the TU exceeded a thresh-
old of 350 expression signal intensity units (Jordan et al.
2005). For each TU, a TS index was computed as described
(Yanai et al. 2005). The value of TS varies between 0 and 1
and reflects the number of tissues where the TU is overly
expressed relative to its expression in other tissues. The
TS index is calculated as follows:

TS = Z:V:1(1 _Xi)
N—1 '

where N is the number of tissues and x; represents a TU’s
signal intensity value in each tissue /i divided by the maxi-
mum signal intensity value of the TU across all tissues.

Comparative Analysis of GL, TE Gene Fractions,
and Gene Expression Parameters

The relative effects of GL and the TE gene environment
on gene expression were evaluated using pairwise and
multiple linear regression analyses where GL and the
TE fractions were the independent variables and the gene
expression parameters PE, BE, and TS were the depen-
dent variables. For these analyses, parameter values were
ranked and binned in order to smooth the signal and re-
duce the background noise. For each parameter, the
15,658 TUs were ranked and divided into 100 bins of
approximately equal size (~157 TUs per bin). Parameter
values were averaged for each bin and the averages were
used to populate ordered vectors of values (n = 100).
Vectors that represent independent and dependent
variables were then compared using pairwise regression
or combined into a multiple regression model. All data
were treated using the same ranking and binning proce-
dure so that the relative effects of the independent
variables on the dependent variables could be compara-
tively evaluated.

Gene Expression Clustering Analysis

TS patterns for the top 10% MIR-rich genes were analyzed
using hierarchical clustering based on pairwise Euclidean
distances between vectors of tissue-specific gene expression
levels over 79 tissues. This analysis was conducted using the
program Genesis (Sturn et al. 2002) with signal intensity val-
ues median normalized across tissues.

Statistical Analyses Used

For the pairwise regression analyses, independent and de-
pendent variable vectors were compared using pairwise
Pearson correlation (r values in figs. 1-5; individual coef-
ficient of determination R? values in tables 1-5), and
the significance of the correlations (P values in figs. 1-5
and tables 1-5) was determined using the Student’s t-
distribution. Partial correlation analyses were used to con-
trol for the effects of correlated pairs of independent
variables (tables 1, 2 and 4). Multiple regression analyses
were conducted to determine the combined coefficient
of determination for all TE fractions (R? values in table
3) and the partial correlation values (r values in table 3).
Significance values for the multiple coefficients of deter-
mination (“all TE” P values in table 3) were determined
using the F distribution. Significance values for the partial
correlations (Pvalues in tables 1-4) were determined using
the Student’s t-distribution.
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Results and Discussion

TE Environment of Human Genes

Gene and TE annotations from the reference sequence
of the human genome (NCBI build 36.1; UCSC hg18) were
analyzed together to characterize the TE environment of
human genes. A total of 19,123 TUs, which reconcile alter-
native splice variants and represent discrete gene loci, were
derived from RefSeq annotations as described in the Mate-
rials and Methods (see also supplementary fig. S1A, Supple-
mentary Material online). The fraction of each human gene
locus derived from TE sequences was determined using
RepeatMasker annotations. Six of the most abundant clas-
ses (families) of TEs were considered in this analysis—Alu,
MIR, L1, L2, DNA and LTR. The frequencies of other classes
of TEs were found to be too low to substantially affect the
overall TE environment of human genes.

Human genes show an average TE fraction of 34% and
a standard deviation (SD) of 18% (fig. 1A). Human TE gene
fractions show a broad distribution that is fairly bell shaped
with the exception of a sharp peak of genes that are devoid
of TEs (0% TE fraction in fig. 1A). The presence of these TE-
free genes is consistent with the removal of genic TEs by
purifying selection (Simons et al. 2006). The TE gene frac-
tions observed for individual TE families are consistent with
previous results (Medstrand et al. 2002) in which Alu ele-
ments were found to be the most abundant family of TEs
in human genes, whereas LTR elements are found in the
lowest frequency within human genes (supplementary
fig. S1B, Supplementary Material online). The length distri-
butions of TEs in genes (supplementary table S2, Supple-
mentary Material online) reveal that they are mostly short
(<400 bp) as would be expected in transcribed regions
where long TEs are less tolerated owing to their higher pro-
pensity to be deleterious.

Overall, intergenic regions show higher TE fractions (aver-
age = 46%; fig. 1A) and also have a more normal distribution
with lower variation than seen for genic regions (SD = 14%;
fig. 1A). For individual human genes, genic and intergenic TE
fractions are highly positively correlated (r = 0.95, P = 6.3 x
107°3; fig. 1B), consistent with the notion that the local ge-
nomic environment strongly influences TE gene fractions
(Smit 1999; Lander et al. 2001).

TE Fractions are Related to GL

As noted in the introduction, the relationship between GL
and expression has been investigated separately from the
relationship between the TE environment of genes and their
expression. However, GL and gene TE fractions may be re-
lated if genes increase in length due, at least in part, to an
accumulation of TE-derived sequences. If genes increase in
length due to the acquisition of TEs, then we expect to see
a positive correlation between gene TE fractions and GL. On
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Fig. 1.—TE fractions in and around human genes. (A) Distributions
of intergenic (green) and genic (red) TE fractions. (B) Relationship
between intergenic TE fractions and the corresponding genic TE
fractions. (C) Relationship between intergenic TE fractions and GL
(green) and relationship between genic TE fractions and GL (red).
Pearson correlation coefficient values (r) along with their significance
values (P) are shown for all pairwise regressions.

the other hand, if GL increases via mechanisms that do not
involve TEs, there should be no correlation between gene TE
fractions and GL. To distinguish between these two possibil-
ities, we compared the TE fractions of human genes with
their length (as described in Materials and Methods).
When all human TEs are considered together, there is
a strong and significantly positive correlation between gene
TE fractions and GL (r = 0.87, P = 1.0 x 1073?; fig. 10).
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Table 1
Relationship between the Local TE Environment and GL
TE Fractions r P Value
GL Genic TE? 0.87 1.04E-32
Intergenic TE? 0.55 1.40E-09
Genic TE | Intergenic TEP 0.82 6.80E-45
Intergenic TE | Genic TE® -0.18 7.02E-02

9 TE fractions within genes (genic) and between genes (intergenic) are correlated
with GL.

® partial correlation between genic TE fractions and GL controlling for intergenic
TE fractions.

€ Partial correlation between intergenic TE fractions and GL controlling for genic
TE fractions.

Although only 0.55% of the average GL for the bin with the
1% shortest genes is constituted by TEs, the percentage pro-
gressively increases to 39.73% for the bin with the top 1%
longest genes, a >72-fold increase in the average fractions
of genes occupied by TEs. However, the positive relationship
between gene TE fractions and GL is not strictly monotonic.
Specifically, in 77% of all genes, the percentage of GL con-
stituted by TEs progressively increases from 0.55% in genes
of about 850 bp to 44.79% for genes spanning about 70.9
kb (>81-fold increase in gene TE fraction; fig. 1C). For the
remaining genes beyond this length (23% of all genes), the
percentage of GL constituted by TEs levels off and remains
more or less constant with increasing length.

As noted in the previous section, TE genic and intergenic
fractions are highly correlated (fig. 1B). These data are con-
sistent with previous studies showing that TE fractions and
family distributions differ among genomic compartments
and thus may depend on regional factors such as GC content
and recombination rate (Medstrand et al. 2002; Versteeg
et al. 2003). Therefore, it is possible that the relationship be-
tween genic TE fractions and GL simply reflects such regional
genomic features. To test for this possibility, we compared in-
tergenic TE fractions with GL. Intergenic TE fractions are sig-
nificantly positively correlated with GL (r = 0.55, P = 1.4 x
1079); however, the correlation is substantially weaker than
seen for genic TE fractions and the slope of the relationship is
far more flat (fig. 1C). Furthermore, partial correlation analysis
shows that TE genic fractions remain positively correlated
with GL when intergenic TE fractions are controlled for,
whereas the positive correlation between intergenic TE frac-
tions and GL disappears when genic TE fractions are con-
trolled for (table 1). In other words, the relationship
between TE gene fractions and GL does appear to have some
gene-specific, as opposed to genomic regional, component.

To evaluate the correlation between TE genic fractions
and GL more closely, we focused on individual TE families
and found that Alus dominate the leveling off in gene
TE fractions seen for the longest genes. Alus are the most
abundant TE sequence within gene boundaries (supplemen-
tary fig. S1B, Supplementary Material online), and Alus also

show a unigue TE fraction distribution with GL. The fraction
of Alus within genes rises sharply and peaks for midsize
genes (~23.3 kb) followed by an almost equally precipitous
decline in frequency, yielding a bell-shaped distribution (fig.
2A and supplementary fig. S3A, Supplementary Material
online). However, the distribution of TE gene fractions for
all other TE families analyzed tends to be generally linear
in relation to GL (fig. 2B; supplementary fig. S3B-F, Supple-
mentary Material online), increasing from an average per-
centage of 0.34% in the shortest genes to 32.83% in
the longest genes (a >96-fold increase in the fractions of
genes occupied by TEs).

It is not immediately apparent while Alu fractions,
unique among all classes of TEs considered here, decline
for the longest genes. One possibility is that Alus are
known to be prevalent in GC-rich regions, whereas larger
genes (introns) tend to have lower GC content (fig. 20).
Thus, it may be that the decline in Alu content for longer
genes is based on regional genomic biases in GC content. If
this is the case, then genes with low GC content should
also have low Alu fractions and vice versa. We found that
genes with low GC content do in fact have lower Alu con-
tent as expected (fig. 2D). However, the relationship be-
tween genic Alu fractions and GC content is not
monotonic; Alu fractions peak for genes in the middle
of the GC content range and decrease for both low-
and high—-GC content genes. We performed partial corre-
lation in an attempt to further tease apart the relationship
between Alu gene fractions and GC content as they relate
to GL. GC content is much more strongly correlated with
GL than Alu fractions are (fig. 2A and C). If the relationship
of Alu genic fractions with GL mainly reflects regional
changes in GC content, then the correlation of Alu frac-
tions with GL should decrease when GC content is con-
trolled for. However, when GC content is controlled for
with partial correlation, the positive correlation between
Alu gene fractions and GL actually increases (table 2). Sim-
ilarly, when Alu gene fractions are controlled for, the cor-
relation between GC content and GL becomes more
negative. These data suggest that both Alu gene fractions
and GC content are independently related, to some extent,
with GL in the human genome.

Overall, the positive correlations between TE gene frac-
tions and GL indicate that longer genes have dispropor-
tionately more TEs relative to other sequence elements.
Considering all TE families together, TEs make up only
0.55% of the shortest genes and yet account for ~40%
of the increase in GL when assessed in the longest genes.
For three-fourth of all genes, the contribution of TEs to
increases in GL is >45%. These results underscore the con-
tributions of TEs to the length differences among
human genes and suggest that the influences of TE
environment and GL on gene expression cannot be ade-
quately considered separately.
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TE Gene
Hypothesis

Environment and the Selection

In order to relate the TE environment of human genes and
GL to gene expression, three expression parameters for
human genes were measured using microarray data over
79 tissues as described in the Materials and Methods: 1)
peak expression (PE), 2) breadth of expression (BE) and 3)
TS. PE is the maximum expression level observed for
a gene over all 79 tissues and is taken to represent the
overall gene expression level; BE is the number of tissues
in which a gene can be considered to be expressed, and TS
is @ measure of tissue specificity described previously
(Yanai et al. 2005). PE and BE were measured here be-
cause they can be used to distinguish between the selec-
tion versus genomic design hypotheses. The selection
hypothesis predicts a stronger positive correlation of PE

Table 2
Effect of GC Content on the Relationship between Alu Genic Fractions
and GL

Feature® r PValue Control® r P Value
GL Alu 045 1.32E-06 Alu|GC 0.58  1.69E-12
GC -0.92 593E-42 GC| Al —0.94  2.99E-152

@ Alu genic fractions and genic GC content values are correlated with GL.
® Partial correlation analyses control for effect of GC content on Alu fractions (Alu |
GC) and Alu fractions on GC content (GC | Alu), respectively.

with GL, whereas the genomic design hypothesis predicts
a stronger correlation of BE with GL. However, BE has
been criticized as an overly simplistic measure that may
not distinguish genes that are expressed in the same sets
of tissues albeit at very different relative levels. For this
reason, we also use a measure of TS that explicitly reflects
the number of tissues where a gene is overly expressed
relative to its expression in other tissues (see Materials
and Methods). Genes overly expressed in a few tissues
(i.e., tissue-specific genes) have high TS indices, whereas
more broadly and evenly expressed genes have low values
of TS.

Regression analysis was used to individually compare
values of these expression parameters with TE gene frac-
tions for all six families and GL (figs. 3-5), and the effects of
TE gene fractions and GL were also considered jointly using
multiple regression (table 3). Consistent with previous re-
sults (Eisenberg and Levanon 2003; Carmel and Koonin
2009), GL can be seen to have a much stronger association
with PE than BE. Whereas 48% of the variability in PE is
attributable to GL, only about 4% of the variability in BE
is attributable to GL (table 3). Furthermore, it can be seen
that the nonmonotonic shape of the relationship between
GL and PE (fig. 3H) is similar to what has been reported
previously (Carmel and Koonin 2009) and also closely re-
sembles the shape of the Alu gene fraction versus PE
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distribution (fig. 3A). The strongest individual TE family cor-
relation with PE is the negative correlation seen for L1 frac-
tion versus PE (fig. 3C). L1 also has the largest negative
partial correlation value with PE in the multiple regression
analysis as well as the largest coefficient of determination
(table 3). When all TEs are analyzed together, 78% of the
variability in PE can be attributed to variability in TE gene
fractions, whereas only 48% is attributable to variability in
GL (table 3).

Although these data do lend support to the selection hy-
pothesis, they also indicate that TE-derived sequences
within genes are more highly correlated with their expres-
sion level than the overall GL. Thus, the selective mechanism
for streamlining highly expressed genes may be related more
to the elimination, or shortening, of TE sequences per se
rather than the overall shortening of genes.

TE Gene Environment and the Genomic Design
Hypothesis

The relationship between GL and BE seen here is generally
weak; GL has one of the lower individual correlations with
BE (fig. 3G), and variability in GL only contributes 9% of the
variability seen in BE (table 1). In addition, the results show
that although all the longest genes are narrowly expressed,
there are about as many compact narrowly expressed genes
as there are compact broadly expressed genes (fig. 4H). Even
more surprising is the fact that the partial correlation value
for GL versus BE is positive, albeit marginally (table 3), and
not negative as can be expected if more narrowly expressed
genes are in fact longer.

To interrogate the genomic design hypothesis more
closely, we used TS as an alternate measure for the tissue
specificity of expression. The genomic design hypothesis
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Table 3 Overall, TE gene fractions also have the highest coefficient
The Relationship between TE Fractions, GL, and Gene Expression of determination for TS. Consistent with what was previ-
Expression  TE and Coefficient of Partial ously shown for PE, these data suggest that the combina-
Parameter GL Determination Correlation torial impact of TEs in human genes is more important
R P Value I P Value than the overall GL with respect to the number of tissues
PE All TEs 078 <2286 -0.13  2.1E-01 in which a gene is expressed and the tissue specificity of
L1 075  <22E-16  —0.86  2.6E-63 genes.
LTR 0.60  <2.2E-16  —020  4.5E-02
GL 0.48 1115 —0.13  2.2E-01
DNA 0.29 428:09  -001  9.48-01 L1 Elements and Gene Expression Levels
L2 0.27 2.0-08  —025  1.4E-02 . . .
MIR 0.06 6.3E-03 025  1.1E-02 As described previously, the data analyzed here provide sup-
Alu 0.03 5.0E-02 032  1.1E-03 port for the selection hypothesis because GL is more strongly
BE All TEs 0.76 <2.2E-16 -0.10 3.1E-01 (negatively) correlated with PE than BE. However, the stron-
Alu 059 <2.2E-16 052 3.08-09 gest negative correlation with PE in the pairwise regression
LTR 057  <2.2E-16  —037  1.0E-04 o - -
analysis is seen for L1 gene fractions (fig. 3C). L1 also has the
L1 0.47 2.8E-15  —0.52  2.4E-09 hiohest " il ot th PE in th ol
MIR 012 SR04 098 36E-03 ighest negative partial correlation with PE in the multiple
6L 0.04 32602 015  15E-01 regression analysis and the hl.ghglst goefﬂqent gf determina-
L2 0.02 7.4E-02 0.08  4.4E-01 tion (table 3); 75% of the variability in PE is attributable to L1
DNA 0.01 1.3E-01 0.14  1.7E-01 gene fractions compared with the 48% explained by GL.
TS All TEs 0.66  <2.2E-16  -032  88E-04 Thus, L1 gene fractions are more predictive of PE than
L1 063  <22E16 067  9.5E-19 GL, indicating that variation in the gene fractions of L1s
Gl 053 <22816 005 6.3E01 is associated with a higher change in gene expression than
12 0.30 3.0-09  —021  3.3E-02 tion in GL
Alu 0.29 5.0E-09  —013  2.2E-01 variation in fat. , .
TR 0.28 94E-09  —024  1.8E-02 Itis also posablg that regional genomic features, such as
MIR 0.27 2.1E-08 0.31 1.6E-03 GC content, contribute to the apparent effect of L1 gene
DNA 0.24 1.86-07  —0.04  7.3E-01 content on PE. It is known that L1 elements are enriched

@R? (the coefficient of determination) is the fraction of variability in each
expression parameter that can be attributed to the variability in each sequence feature
(individual TE families, GL, or all TEs combined).

Bris the partial correlation of each feature with the expression parameters, taking
into account the presence of the other elements. For each expression parameter, the
TEs and GL are ranked by their predictive value for the parameter.

posits that increasing GL is based on the requirement for
additional regulatory sequences in genes that are expressed
more narrowly. Thus, in the case of TS, a positive correla-
tion is expected between GL and TS; in other words, longer
genes are expected to be more tissue specific. For the pair-
wise regression analysis, there is actually a strongly negative
correlation between GL and TS (fig. 5H). This negative trend
holds when the TE fractions are controlled for in the partial
correlation, and GL also has a high coefficient of determi-
nation for TS (table 3). It should be noted that the negative
correlation between GL and TS may be related to the ana-
lytical formulation used to compute TS (see Materials and
Methods) because genes with high expression levels in
one or a few tissues (i.e., high PE) will often, but not always,
have high TS as well. Nevertheless, when taken together,
the data for both GL versus BE and GL versus TS seem to
argue against the genomic design hypothesis as originally
conceived.

With respect to the TEs, there are strongly positive (Alu;
fig. 4A) and negative (L1; fig. 4C) correlations between TE
gene fractions and BE, and 76% of the variability in BE can
be attributed to variability in all TE gene fractions (table 3).

in GC-poor regions (Smit 1999; Lander et al. 2001), whereas
GC content is strongly positively correlated with PE and BE
(Vinogradov 2005). Thus, one may expect to see the kind of
negative correlations between L1 and PE/BE seen here based
solely on regional biases in GC content. We performed par-
tial correlation to separate the effects of L1 gene fractions
and GC content on both PE and BE. When we control for GC
content, the partial correlation of L1 fractions with PE re-
mains highly significant (table 4). Conversely, when we con-
trol for L1 fractions, the partial correlation of GC with PE is
rendered insignificant (table 4). Both L1 fractions and GC
content show similar levels of relatedness with BE and partial
correlation analysis does not remove either effect (table 4).
Thus, the relationship between L1 gene fractions and PE/BE
cannot be explained solely by the genomic distribution of
L1s among different GC content regions.

L1 elements are an abundant and recently active family of
LINEs that make up 17% of the human genome sequence
(Landeretal. 2001; Venter et al. 2001). Experimental studies
have demonstrated that the presence of L1 sequences
within genes can lower transcriptional activity (Han et al.
2004; Ustyugova et al. 2006). The effect of the presence
of L1s on PE observed here may be attributed to the fact
that the disruptive activity of L1s on transcription inhibits
gene expression more than an overall increase in GL does.
However, this finding is not entirely inconsistent with the
selection hypothesis, rather it suggests a specific mecha-
nism, namely the elimination of L1 sequences, for selectively
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tuning highly expressed genes that would also result in an
overall decrease in their length.

MIR Elements and Tissue-Specific Gene Expression

The genomic design hypothesis posits a requirement for ad-
ditional regulatory sequence elements that facilitate TS,
which in turn leads to an increase in GL. However, data re-
ported here show that the presence of such regulatory el-
ements does not necessarily result in an overall increase in
GL as predicted by the genome design hypothesis (fig. 5H).
In light of this realization, we sought to evaluate whether
any specific TE sequence elements might be related to
the regulatory complexity entailed by tissue-specific genes.
Of all the TE families evaluated, MIRs are the only elements
that show the expected trends for the genome design hy-
pothesis for both BE and TS. The fraction of MIRs in human
genes is negatively correlated with BE (fig. 4B) and positively

correlated with TS (fig. 5B) as expected. In fact, MIRs are
the only TEs positively correlated with TS, and the increase
in the MIR gene fraction is not linear with increasing TS. At
the high range of TS (>0.7; 58% of all genes), the positive
correlation of MIR gene fractions to TS is even stronger
(r=078,P=37x 1079

These results are interesting in light of what is already
known about MIRs. MIR elements (mammalian-wide inter-
spersed repeats) are an ancient family of transfer RNA-
derived SINEs (Jurka et al. 1995; Smit and Riggs 1995),
and they have previously been implicated as having regula-
tory significance in a number of studies. Initially, human MIR
sequences were shown to be highly conserved over time
suggesting that they may encode some unknown regulatory
function (Silva et al. 2003). Subsequently, MIR-derived se-
guences have been shown to donate transcription factor—
binding sites (Polavarapu et al. 2008; Wang et al. 2009),
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enhancer sequences (Marino-Ramirez and Jordan 2006), mi-
croRNAs (Piriyapongsa et al. 2007), and cis-natural antisense
transcripts (Conley et al. 2008) to the human genome. In
addition, it has been shown that, whereas TEs are generally
depleted from introns, MIRs are actually significantly en-
riched within genes that might require subtle regulation
of transcript levels or precise activation timing, such as
growth factors, cytokines, hormones, and genes involved
in the immune response (Sironi et al. 2006). Such genes
would be expected to be largely tissue specific.

If MIRs donate regulatory sequences to tissue-specific
genes, then one may expect to observe relative increases
in MIR density in the regulatory regions upstream and down-
stream of TSSs. To evaluate this possibility, we took the top
10% tissue-specific genes and evaluated their MIR frequen-
cies at 1-kb intervals along a 20-kb window surrounding the

gene TSS. As with all other TEs, MIRs show a marked decline
in frequency most proximal to the TSS. However, MIRs show
a unique pattern of enrichment both upstream and

Table 4
Effect of GC Content on the Relationship between L1 Genic Fractions
and Gene Expression

Feature? r P Value Control® r P Value
PE L1 -0.87 1.69E-31 L1 | GC —-0.73 1.3E-25
GC 0.69 1.20E-15 GC | L1 0.12 2.2E-01
BE L1 -0.69 1.38E-15 L1 | GC —-0.44 1.7E-06
GC —0.21  2.00E-02 GC | L1 0.44  1.4E-06
TS L1 -0.79 3.12E-23 L1 | GC -0.77 3.0E-32
GC 0.32 6.81E-04 GC | L1 -0.03 7.5E-01

@11 genic fractions and genic GC content values are correlated with the
expression parameters PE, BE, and TS (tissue-specificity).

P Partial correlation analyses control for effect of GC content on L1 fractions (L1 |
GC) and L1 fractions on GC content (GC | L1), respectively.
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downstream of the TSS, just outside the proximal promoter
region, compared with other families of TEs. In fact, MIRs
are the only elements that show local frequency maxima
at —1 kb and +2 kb with respect to the TSS. All other
TEs show their maxima in more distal regions from the
TSS (fig. 6). This pattern is consistent with a unique regula-
tory role for MIRs, perhaps owing to the donation of cis-
regulatory elements, as compared with other TEs.

If the regulatory effect of genic MIRs is based on the do-
nation of shared transcription factor-binding sites, then one
may expect the tissues in which MIR-rich genes are ex-
pressed to be similar. We evaluated this prediction in two
ways. First, we took the top 10% MIR-rich genes and for
each gene we determined the tissue in which it was max-
imally expressed. The observed frequency distribution for
these tissues was compared with a randomized distribution
of the same number of genes among all tissues in the micro-
array data set analyzed here using a % test. The observed
distribution is far from random (supplementary fig. S4, Sup-
plementary Material online; > = 1,406.8, P = 1.1 x 10~
242y "and there are a number of specific tissues, and groups
of related tissues, that are overrepresented, particularly
liver, blood-related tissues, reproductive tissues and nervous
tissues. Second, we clustered the expression patterns of the
top 10% MIR-rich genes using hierarchical clustering based
on the Euclidean distances between their gene expression

patterns over 79 tissues. Several of the resulting clusters
show groups of MIR-rich genes that are markedly overex-
pressed among these same related groups of tissues (fig. 7).

MIRs are a relatively ancient family of TEs that are con-
served among mammals including mouse. We evaluated
TE gene fraction and expression data for mouse, in the same
way as was done for humans, to see if the same trends in the
relationship between MIR gene fractions and tissue specific-
ity hold for mouse elements. As is the case for the human
genome, mouse MIR elements are the only family of TEs
with genic fractions that are significantly positively corre-
lated with TS (table 5). This suggests the possibility that
MIR elements have been conserved among mammalian ge-
nomes, at least to some extent, by virtue of their regulatory
contributions.

The genomic design hypothesis predicts that additional
regulatory sequence elements required by tissue-specific
genes will lead to an increase in their overall length. How-
ever, with respect to MIRs, our analysis suggests that the en-
richment of regulatory elements in tissue-specific genes
does not lead to an increase in the overall length of genes.
Rather, the regulatory complexity required by tissue-specific
genes may be achieved in some cases via the donation of
a few key sequence elements provided by TEs that come
preequipped with existing regulatory capacity.

Conclusions

The architecture of human genes has important implications
for how they are expressed. Previous studies on this topic
have focused separately on the influences of GL or the TE
environment on gene expression. Here, we show that these
two factors are closely related, and we consider them jointly
in an attempt to dissect their individual contributions. Con-
sistent with previous results, we observed GL to be strongly
correlated with PE and less so with BE. We also show that GL
is strongly correlated with TS but not in the direction that is
expected according to the genomic design hypothesis. These
data provide strong support for the selection hypothesis.
However, we show that the TE fraction of human genes
has a stronger overall effect on gene expression than does
GL. Considered together, TE gene fractions explain 78%,

Fic. 7.—MIR-rich genes hierarchically clustered into groups of similar expression profiles across tissues. The clusters show maximum expression in

related sets of tissues.
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Table 5
Relationship between Genic TE Fractions and Tissue-Specificity in
Mouse®

TE Family r P Value
MIR 0.37 7.5E-05
LTR 0.12 1.2E-01
L1 0.08 2.2E-01
DNA 0.07 2.6E-01
L2 -0.25 5.6E-03
D -0.40 2.1E-05
B4 —0.46 5.9e-07
B1 -0.74 1.6E-18
B2 -0.74 4.9E-19

2 Genic TE fractions for mouse TE families were correlated with tissue-specificity in
the same way as done for human TE families (see fig. 5).

76%, and 66% of the variability observed for PE, BE, and TS
respectively, in all cases greater than what is seen for GL. We
also uncover examples where individual TE families, L1s, and
MIRs respectively, have marked effects on the level and
breadth of gene expression.

Consideration of intergenic TE fractions and GC content
together with TE gene fractions suggests that the relation-
ships between TE gene fractions and GL and expression are
not solely related to regional genomic processes. However,
there may be other as yet undetected regional genomic fac-
tors that could mitigate the apparent relationships between
TE gene fractions and GL and expression. Nevertheless, the
results reported here underscore the potential regulatory
implications of the TE environment of human genes and also
suggest specific mechanisms for how TEs may contribute to
gene regulation.

Supplementary Material

Supplementary figures S1, S3, and S4 and table S2 are avail-
able at Genome Biology and Evolution online (http:/
www.gbe.oxfordjournals.org/).
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Abstract.

Merozoite surface protein 1 (MSP-1) is a polymorphic malaria protein with functional domains involved in

parasite erythrocyte interaction. Plasmodium vivax MSP-1 has a fragment (Pv200L) that has been identified as a poten-
tial subunit vaccine because it is highly immunogenic and induces partial protection against infectious parasite challenge
in vaccinated monkeys. To determine the extent of genetic polymorphism and its effect on the translated protein, we
sequenced the Pv200L coding region from isolates of 26 P. vivax-infected patients in a malaria-endemic area of Colombia.
The extent of nucleotide diversity (1) in these isolates (0.061 + 0.004) was significantly lower (P <0.001) than that observed
in Thai and Brazilian isolates; 0.083 + 0.006 and 0.090 + 0.006, respectively. We found two new alleles and several previ-
ously unidentified dimorphic substitutions and significant size polymorphism. The presence of highly conserved blocks in
this fragment has important implications for the development of Pv200L as a subunit vaccine candidate.

INTRODUCTION

Plasmodium vivax is responsible for about 20% of the
global malaria cases and more than half (56%) of the non-
African malarial infections. Indeed, P. vivax has reemerged
in many regions of the world where malaria was eliminated
in the 1950-60s with 70-80 million cases per year and 2.6 bil-
lion people at risk of infection.!? Given its broad distribu-
tion, P. vivax co-exists with Plasmodium falciparum and in
minor proportion with P. malariae.®* Regardless, the prog-
ress achieved in the development of a vaccine against P. falci-
parum, there is paucity of suitable vaccine candidates against
P, vivax, with only two antigens currently under evaluation
in human clinical trials and a few others in preclinical eval-
uation.”® The understandable bias in research effort toward
P. falciparum, however, hampers our ability of developing a
vaccine that can be effectively deployed against malaria out-
side Africa where these two parasites coexist.

We previously defined the Pv200L fragment of PvMSP-1,
located toward the N-terminal end of the 83 kDa domain
(Figure 1), as a P. vivax potential subunit vaccine based on
several features of the protein. The Pv200L has significant
homology to Pfl90L, a well-defined P. falciparum vaccine
candidate,”” and a Pv200L recombinant protein produced
in Escherichia coli, displayed a high level of antigenicity in
humans. Additionally, this protein fragment showed good
immunogenicity in mice and primates, and the capacity to
induce partial protection against a P. vivax blood-stage chal-
lenge in Aotus monkeys.’

The Pv200L fragment includes the entire blocks 2, 3, and
4, plus segments of blocks 1 and 5 of the PvMSP-1.1° Genetic
polymorphism studies in P. vivax isolates have shown that
blocks 1, 3, and 5 are conserved at the protein level and dis-
play a few dimorphic substitutions. Blocks 2 and 4 are the most
variable,both in size and sequence, with basic and recombinant
block types generated by intra- and inter-allelic recombination
events.!! Here, we describe the polymorphism of the Pv200L

*Address correspondence to Sécrates Herrera, Malaria Vaccine
and Drug Development Center, Carrera 37 - 2Bis No. 5E - 08, Cali,
Colombia. E-mail: sherrera@inmuno.org
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gene fragment and its inferred amino acid sequence in 26
P.vivax clinical isolates from Buenaventura, a malaria-endemic
area located on the southern Pacific coast of Colombia.* We
also examined 42 Pv200L fragments from PvMSP-1 sequences
previously reported in GenBank and describe the phyloge-
netic analysis of all sequences.

MATERIALS AND METHODS

Study population and P. vivax isolates. The Colombian
Pacific region is composed of four states—Chocé, Valle,
Cauca, and Nariio—and is considered the second most
malaria-endemic region of Colombia, as it accounts for
about 30% of the country’s disease burden.* In Colombia
P vivax is the predominant malaria species and is responsible
for more than 60% of the clinical cases reported every year;
however, because of the high prevalence of Duffy-negative in
the Afro-colombian habitants of this region, the predominant
species in the Pacific region is P. falciparum.* Blood samples
were collected by convenience during 2004 and 2005 from
symptomatic patients diagnosed by thick smear at the
outpatient clinical facilities of the Malaria Vaccine and Drug
Development Center (MVDC) in Buenaventura, the main
seaport on the Colombian Pacific coast. Buenaventura,located
in the Valle state, has ~400,000 inhabitants and conditions for
low and unstable malaria transmission.'? A total of 26 samples
exclusively infected by P. vivax, as confirmed by polymerase
chain reaction (PCR),"3 were collected from patients from rural
and urban communities. All adult participants and the parents,
or legal guardians of minor patients, were asked to provide a
signed written informed consent previously approved by the
Institutional Review Board of Universidad del Valle.

PCR, cloning, and sequencing. The primers 200L-1
(5GCC AAG CTG GAC AAG TTA GA-3’) and 200L-2
(5-AAG GTT GGA ACT GTC TTT CC-3’) were designed
to amplify by PCR the Pv200L coding region (bp 143-1,333)
from the PvMSP-1 of Salvador 1 strain (GenBank accession
no. AF435593). The primers were confirmed to align with all
available complete sequences of PvMSP-1 in GenBank." The
PCR reactions were performed with iProof high-fidelity DNA
polymerase (Bio-Rad, Hercules, CA) in a PTC-100 thermal
cycler (MJ Research, Watertown, MA) as follows: 35 cycles of



POLYMORPHISM OF MSP-1 Pv200L IN COLOMBIA 65

Ficure 1. Nucleotide diversity (m) scores along the Pv200L gene
fragment. The scores are shown for three groups of isolates: 26 from
Colombia, 20 from Thailand, and 8 from Brazil. The sequences from
Thai and Brazil isolates were extracted from complete PvMSP-1 cds
sequences available in GenBank. Relative position of blocks is indi-
cated in the bar. Variable blocks are indicated in black.

30 sec at 94°C, 60 sec at 55°C, and 60 sec at 72°C. The PCR
products (1-1.2 Kb) were ligated to pCR4-TOPO (Invitrogen,
Carlsbad, CA) according to manufacturer instructions, and
then used to transform chemically competent E. coli One-Shot
(Invitrogen). Kanamycin-resistant clones were confirmed by
restriction enzyme analysis with EcoRI (Fermentas, Hanover,
MD). We sequenced only one clone per isolate. Sequencing
was performed with BigDye Terminator version 3.1 kit and the
M14 forward and reverse primers in an ABI-PRISM AVANT
3100 sequencer (Applied Biosystems, Foster City, CA). Every
run was performed a minimum of two times and repeated as
much as needed to obtain quality values > 20 (< 4 Ns/20 bases,
< 10% Ns, and maximum percent of mixed bases = 20.0%) as
assessed with SeqScape Software (Applied Biosystems).
Sequences, sequence alignment, and statistical analysis.
We analyzed the 26 Pv200L gene sequences from the
Colombian Pacific coast, and the 42 Pv200L fragments from
PvMSP-1 sequences available in GenBank, accession numbers:
AF435593-AF435599, AF435601-AF435620, AF435622-
AF435625, AF435627, AF435629-AF435632, and AF435634—
AF435639 (October 2006).1° These GenBank sequences were
collectively named as non-Colombian. Sequences were aligned
using CLUSTAL X2," and the alignment was used to calculate
nucleotide diversity (n + SE) with MEGA 4.0 using the Jukes-
Cantor model and retaining all gaps.'* The &t value obtained for
Pv200L and each block was submitted to one-way analysis of
variance statistical analysis. DNA polymorphism was analyzed
with DnaSP 4.10 with a sliding window of 100 bases and a
step size of 20 bases for a haploid genome.!” To determine the
influence of geographical origin of the isolates on nucleotide
diversity and DNA polymorphism, we performed the same
analysis for groups of GenBank sequences from Thailand
(20 isolates) and Brazil (8 isolates). The output data were
exported to STATA 8.0 (Stata Corp., College Station, TX)
to plot overlapping & curves with standardized scales for the

different groups. Boundaries of conserved and variable blocks
were determined from nucleotide sequence homology, as
previously reported.’’ Subsequently, T and its standard error
were computed for each block. The number of synonymous
(dy) and non-synonymous (d, ) substitutions was estimated for
each block, to avoid bias caused by size polymorphisms, by Nei
and Gojobori’s method with the Jukes-Cantor correction in
MEGA 4.0.1%20We estimated the difference between Ds an Dn
and its standard deviation was calculated using bootstrap with
500 pseudo-replications for Ds and Dn, and two-tail Z-test on
the difference between Ds and Dn.?! The null hypothesis is that
Ds = Dn; thus, we assumed as null hypothesis that the observed
polymorphism was neutral. In silico translated DNA sequences
were used to identify the types of variable blocks (2 and 4), as
previously defined,'” and point mutations in conserved blocks.
Alleles were identified by the specific combination of variable
block types as proposed by Putaporntip and others."
Phylogenetics and epitope conservation analysis. The
distances of the P.vivaxisolates were inferred from phylogenetic
analysis of the translated Pv200L sequences using MEGA 4.0.
Because of size polymorphism in variable blocks, distances
were calculated only with sequence alignments of conserved
edited-joined blocks 1, 3, and 5. Trees were constructed using
the neighbor-joining (NJ) method, excluding gaps by pairwise
deletion, with the Kimura p-distance model.”> The reliability
of the trees was assessed by the bootstrap method with 1,000
pseudo-replications. Phylogenetic analysis was performed with
the 26 Colombian sequences and the 42 sequences available
in GenBank. Complementary analyses to determine genetic
divergences was performed using the Fstat program (Fst).
Finally, we determined the conservation pattern of previously
defined promiscuous T-helper epitopes contained in the Pv200L
fragment. To this purpose we constructed multiple sequence
alignments with the 68 Pv200L available sequences and then
realigned the T-helper epitope sequences in CLUSTAL X2.

RESULTS

Geographical origin of Colombian isolates. The Pv200L
gene fragment was sequenced and analyzed in a total of 26
isolates from the Colombian Pacific coast obtained from
P.vivax-infected patients. Eighteen (69.2%) of the isolates were
collected from patients who preferred to live in rural areas of
Buenaventura (Table 1). The majority of rural isolates were
from La Delfina and San Cipriano villages. The urban isolates
were predominantly from Commune 12, of Buenaventura

TaBLE 1
Origin of the Colombian Plasmodium vivax isolates

Place Locality n Isolates

Comuna 12 U* 6 CU45,CUS57,CU65,CU66, CUS1, CUS3
La Delfina R 6 D20,D48,D61, D85, D102, D103
San Cipriano R 4 SC84,SC92,SC93,SC1
Buenaventura U 2 B74,B30
La Laguna R 1 L8
La Gloria R 1 GI1
Cordoba R 1 Co68
Zacarias R 1 780
San Francisco R 1 SF56
Triana R 1 T28
Citronela R 1 CGi22
Potedo R 1 P54

*Urban.

f Rural.
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TABLE 2

Nucleotide diversity (r + SE)* per blocks of the Pv200L gene fragment

Groups n Overall Block 1 Block 2 Block 3 Block 4 Block 5
All 68 0.088 + 0.006 0.020 + 0.004 0.233 + 0.020 0.049 + 0.017 0.160 + 0.021 0.049 + 0.010
Non-Colombiant 42 0.086 + 0.005 0.022 + 0.004 0.212 +0.018 0.052 +0.017 0.162 + 0.024 0.051 +0.011
Colombian 26 0.061 + 0.004% 0.011 + 0.002% 0.155 + 0.014% 0.040 + 0.014 0.134 + 0.022 0.039 + 0.010
Thailand 20 0.083 + 0.006 0.022 + 0.004 0.228 = 0.020 0.042 + 0.015 0.126 + 0.019 0.038 + 0.008
Brazil 8 0.090 + 0.006 0.021 + 0.004 0.203 + 0.019 0.056 + 0.020 0.166 + 0.026 0.035 £ 0.015

*As calculated with MEGA 3.0 using the Jukes-Cantor model.

+ Pv 200L gene fragment trimmed out from the 42 Pv MSP-1 cds available in GenBank by June 2009.
4P <0.001 as calculated by one-way analysis of variance (ANOVA) Colombia vs. Thailand and Colombia vs. Brazil.

town. This commune is the closest community to the humid
rain forests in the Pacific coast.

Nucleotide diversity. We found a nucleotide diversity value of
0.088 + 0.006 for the Pv200L gene fragment for all the isolates,
including Colombian and non-Colombian (Table 2). Such
n value was significantly lower in the Colombian group than
in either Thai or Brazilian subgroups of sequences. The highest
contribution for nucleotide diversity was observed in the
Brazilian group followed by the Thai group. As expected, the
variable blocks 2 and 4 had the highest  values across all of
the groups. Block 2 from Colombian isolates had a significantly
lower m value than Thai and Brazilian isolates (Figure 1 and
Table 2); whereas Thai sequences displayed the lowest ©t value
for block 4. Regarding conserved blocks 1,3, and 5, all of them
displayed the expected conservation. In the case of block 1, the
nucleotide diversity was significantly lower in the Colombian
isolates than in the Thai and Brazilian ones. Although block 3
had also the lowest  value in the Colombian parasites, the
difference was not statistically significant. Conserved block 5
displayed & values below 0.040 in all isolates, with the lowest
diversity in the Brazilian isolates (Table 2).

TABLE 3

Synonymous (d,) and non-synonymous (d) nucleotide substitutions
in Pv200L fragment

Groups Block dg* + SE d*+SE V4
All (N = 68) 1 0.053 £0.016 0.012 +0.003 -2.5944%
2 0168 +0.036 0.259+0.032 -2.5930%
3 0.165 £ 0.084 0.020 +0.011 -1.6597
4 0110+0.044 0.174+0.026  1.1718
5 0.141 £ 0.048 0.023 £ 0.008 -2.5111%
Non-Colombian 1+ 0.057+0.017 0.012 +0.004 -2.65817
(N=42) 2 0.132 +£0.028 0.244 +0.028 -2.67242+
3 0.182+0.088 0.019+0.011 -1.7733
4 0.088 +0.038 0.184 +£0.030  1.891
5 0.142+0.046 0.026 +0.010 -2.4249
Colombian (N=26) 1 0.030 +0.009 0.006 +0.002 -2.6278+
2 0.142+0.029 0.161 +0.020 -2.13556}
3 0.116 £ 0.066 0.020 = 0.010 —1.2895
4 0116+0.052 0.139+0.023  0.3967
5 0.118 £ 0.043 0.017 +£0.006 —-2.1372%
Thailand (N = 20) 1 0.053 £0.016 0.013 +0.004 -2.49773}
2 0.152 +£0.034 0.259 +£0.030 -2.42017+
3 0.141+0.078 0.016 +0.009 -1.6835
4 0.079 +£0.034 0.139£0.022  1.4794
5 0.105+0.034 0.019+0.008 -2.3153F
Brazil (N =38) 1 0.060 +0.018 0.010 £ 0.003 —2.7435%
2 0.140+0.030 0.229 +0.028 -2.5384+F
3 0.184 +£0.090 0.024 +0.013 -1.5954
4 0.108+0.043 0.183+0.033  1.3086
5 0.190 £ 0.064 0.033 +0.013 -2.4627+

*dgand d are per every 100 sites.
+Indicates significant with P < 0.05.

Synonymous and non-synonymous substitutions. As
expected, the d value was higher in blocks 2 and 4 (Table 3);
however, the value was only significant in block 2. This was
true for each country and the combined sample. The dg value
was significantly higher than d for blocks 1 and 5 using the
Z-test, indicating that some blocks involved in this fragment
could be under negative selection.

Non-synonymous substitutions in conserved blocks
of Colombian isolates. We found a total of 26 dimorphic
substitutions across conserved blocks 1, 3, and 5, and seven of
them are newly identified (Table 4). Some substitutions were
consistently linked within isolates, such as SC84, SC93, SC1,
and Co68, most of them collected from inhabitants from San
Cipriano village, which shared four dimorphic substitutions,
and isolates D61 and B74 that shared five dimorphic sub-
stitutions plus two insertions (block 1: 61[-/A] and 62[-/S]).

TaBLE 4
Dimorphic substitutions in conserved blocks

Block Mutation* Post  Proportioni Isolates§
N/S 53 24:02:00 D61,B74
K/Q 56 24:02:00 D61,B74
VIG] 57 25:01:00 B74
D/E 58  21:05 D61, B74,SC84, SC93, SC1
AT 59 24:02:00 D61,B74
G/S 83  24:02:00 D61,B74
S/Fq 85 25:01:00 SC1
1 F/vV 105  24:02:00 D61,B74
N/HY 108 25:01:00 SC1
H/RY 152 25:01:00 CU45
/vy 155 25:01:00 D48
T/S 156  19:07 Co68, SC84, SC93, SC1, D61,
B74,SC92
E/D 157 22:04 Co68, SC84, SCY3, SC1
AT 186 24:02:00 Co68,SC92
3 E/A 315 17:09 L8, D20, CU45, D48, D61, CU66,
B74,G91, D103
D/IG 329 22:04 Co68, SC84, SCY3, SCI
V/IA 332 21:05 Co068, SC84, SC93, SC1, SF56
D/Y] 384 25:01:00 SC92
D/N 389 13:13 Ci22,T28, B30, P54, SF56, CU57,
CU65, 280, CUS81, CU83, D85,
SC92,D102
v 409  25:01:00 S§C92
5 S/N{ 412 25:01:00 D103
K/S 414 25:01:00 S§C92
S/A 415 25:01:00 SC92
A/S 416 25:01:00 SC92
G/S 417 25:01:00 SC92
P/T 419  25:01:00 SC92

*The least frequent amino acid residue is presented as denominator.

+Position. Referred as to the sequence of Pv MSP-1 of Salvador I strain.

1 Exact number of Colombian isolates that presented the most frequent over the least fre-
quent amino acid residue.

§Only those isolates that contain the least frequent substitution are listed. Isolates
with linked substitutions are shown with special characters (bold, italic, and italic/bold/
underlined).

q Newly identified substitutions.
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TABLE 5
Classification of variable blocks

Type #(%) Isolates
Block 2a
Basic 1 1(3.8) SC92
Basic 2 4 (15.4) Co68,SC84,SC93,SC1
Basic 3 2(7.7) Do61,B74
Basic 4 7(26.9) L8,D20,CU45,D48, CU66, G91, D103
Rec 6 10 (38.5)  Ci22,T28, B30, P54, SF56, CU57,Z80, CUS81,
CU83,D102
Rec7 2(7.7) CU65, D85
Block 2b
Type 20* 1(3.8) SC92
Type 14 7(26.9) L8,D20,CU45,D48, CU66,G91, D103
Type 15 12 (46.2)  Ci22,T28, B30, P54, SF56, CU57, CU65, Z80,
CUS81, CU83,D85,D102
Type 16 2(7.7) D61, B74
Type 19 4(15.4) Co68,SC84,SC93,SC1
Block 2¢
Basic 2 1(3.8) Co68
Basic 3 19 (73.1) L8, D20,t CU45, D48,1 CU66,7 G91,¥
D103, Ci22,T28, B30, P54, SF56, CU57,
CU65, 280, CU81, CU83, D85, D102
Rec 5 2(7.7) D61,B74
Rec7 1(3.8) SC92
Rec 10 3(11.6) SC84,SC93,SC1
Block 4
Basic 1 7(26.9) L8, D20,CU45,D48, CU66,GI1, D103
Basic 2 4 (15.4) Co68,SC84,SC93,SC1
Basic 3 1(3.8) SC92
Rec 5 14 (53.9)  Ci22,T28, B30, P54, SF56, CU57, CU65, Z80,

CU81, CU83,D85,D102, D61, B74%

#= Number of block types.

*Newly identified insertion of GSSNS after fifth amino acid.

TSeven isolates had the P/S mutation in the fourth amino acid.

+Two isolates had the four linked substitutions I/V, D/E, V/E, and D/A at positions 3, 33,
39, and 40.

Characteristically, only isolate SC92 had seven out of nine of
the dimorphic substitutions identified for block 5 (Table 4).
Variable blocks classification in Colombian isolates. Results
were consistent with previously reported data.'” We identified
six block 2a types (four basic and two recombinants), four block
2b types (three previously reported and a new one), five block
2c¢ types (two basic and three recombinants), and four block 4
types (three basic and one recombinant) (Table 5). The new
block 2b type named by us as type 20, had an extra insertion
of the tandem repeat GSSNS in the SC92 isolate. Additionally,
seven isolates shared the P/S substitution in block 2c type 3.
These last two findings helped to identify the two new alleles
reported here (see below). Several new substitutions were
identified in each block. Interestingly, the recombinant types

identified contained fragments from basic types previously
reported but not detected in the 26 Colombian isolates (see

supplemental data).

Allelic distribution. The variable blocks included

the Pv200L fragment allowed us to classify the isolates in
12 potential alleles pooled in seven groups. Alleles are
presented in groups because the definite allele needs of other
variable blocks are not included in the Pv200L fragment
(Table 6). We found two non-previously described alleles,
which we have designated as 32 and 33, to continue with the
nomenclature proposed previously.’’ Allele 32 was designed
as a new allele because the block 2b type 20 and only isolate
SC92 had it. The reason why allele 33 was considered as new
is because its mosaic organization of variable blocks 2 (a, b,
and c) and 4 have not been previously described. A total of
seven of the isolates (26.9%) were classified as allele 32 and
all shared the dimorphic substitution P/S in the block 2c
(Table 6). The majority of isolates (38.5%) were grouped as
allele 6 or 20, meanwhile the isolate SC1 that is being used
to develop a vaccine candidate was the third most frequent

(11%).

Phylogenetic analysis. The NJ tree, created with distances
between amino acid sequences of conserved blocks, showed
that the 26 Colombian isolates clustered in agreement with
the allele distribution, which was determined with the specific
combination of variable blocks (Figure 2A). The isolate
SC1 clustered with the isolates SC84 and SC93, all of them
collected from inhabitants of San Cipriano village. The NJ tree
created with the 68 Pv200L sequences showed that there is
a slight trend to cluster in agreement with the geographical
origin (Figure 2B), being more evident for the isolates
from Colombia (COL), South Korea (SK), and Bangladesh
(BD). Brazil (B) and Thailand (T) isolates displayed a more
promiscuous clustering. The isolate SC92, collected from San
Cipriano village, was the most distant of Colombian isolates,
and clustered fairly close to Asian sequences (Figure 2B).
A complementary analyses with Fst among Colombian,
Brazilian, and Thai isolates revealed that there is a strong
geographic structure; however, the lowest divergence (Fst =
0.06453) was observed between Brazilian and Thailand iso-
lates, whereas Colombian isolates were clearly divergent

(Fst = 0.1676 with Thailand and Fst = 0.2437 with Brazil).

Epitope conservation analysis. At least five different
T-helper epitopes have been previously defined toward the
N-terminal portion of PvMSP-1, and four of them are included
within the Pv200L fragment.® All of them showed a high
conservation pattern along the 68 Pv200L amino acid sequences

(Table 7).

TABLE 6

Frequency of the PvMsp-1 Pv200L alleles identified in the Colombian Pacific coast

Block 2a Block 2b Block 2¢ Block 4 Allele* Isolates Frequency (%)
Rec 6 Type 15 Basic 3 Rec 5 6,20 Ci22,T28, B30, P54, SF56, CU57, 280, CU81, CU83, D102 38.5
Basic 4 Type 14 Basic 3 Basic 1 334 L8, D20, CU45, D48, CU66, G91, D103 26.9
Basic 2 Type 19 Rec 10 Basic 2 7,21 SC84,S8C93,SC1 11.5
Basic 3 Type 16 Rec5 Rec5 5,11,12,13 D61,B74 7.7
Rec7 Type 15 Basic 3 Rec 5 25 CU65, D85 7.7
Basic 1 Type 20§ Rec7 Basic 3 32 SC92 3.8
Basic 2 Type 19 Basic 2 Basic 2 31 Co68 3.8

*Allele is defined by the specific arrangement of variable blocks. Several alleles mean that any of them contain that specific combination of blocks 2a, 2b, 2c, and 4. To define the exact allele needs

variable blocks that are not included in the Pv200L sequence.
+P/S mutation in the fourth amino acid across the seven isolates.
+New alleles.
§ Newly identified insertion of repeat GSSNS after fifth amino acid.
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Figure 2. Neighbor-joining (NJ) phylogenetic trees of Pv200L. Trees were built with edited-joined sequences of conserved blocks 1, 3, and 5.
(A) NJ tree of the 26 Pv200L sequences from Colombian Plasmodium vivax isolates. Isolates alleles are denoted as follows: A (Alleles 6 or 20),
A (Allele 33), & (Alleles 7 or 21), ¢ (Alleles 8,11,12 or 13), ® (Allele 31), and B (Allele 32). (B) NJ trees of trees of 68 Pv200L sequences, including
42 obtained from PvMSP-1 cds available in Genbank and the 26 Colombian isolates (WCOL).

DISCUSSION

As expected, the Pv200L fragment of PvMSP-1 showed to
be polymorphic in sequence and in size, which resembles very
well the mosaic structure previously described by others, with a
polymorphism greatly concentrated in fragments 2 and 4, sur-
rounded by the well-conserved blocks 1, 3, and 5.1 However,
regardless of this polymorphism, there is some evidence of
purifying selection. Although this study focused only in the
Pv200L fragment, our results may indicate a more complex
dynamic of selection acting on the PYMSP-1 polymorphism

than previously thought.?* The overall nucleotide polymor-
phism and the genetic diversity found in the isolates from the
Colombian Pacific coast was substantially lower than in those
from Thailand and Brazil, probably due in part to the lower/
seasonal transmission and geographic isolation. Most malaria
cases studied here occur in close rural communities with high
internal mobility but low foreign influence from potentially
P, vivax-infected international travelers. This geographic isola-
tion also could explain the pattern of Fst. However, presence
of imported parasites cannot be completely excluded. SC92
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TABLE 7
Conservation pattern of promiscuous T-helper epitopes in Pv200L

1d§ Sequence conservation
PvT4 NFVGKFLELQIPGHTDLLHL
PvT6 EIiigI:MH\QNFHYDLLRAKLH
PvT8 E]RMEEEY}/LGLYRPLDNIKD
PvT19 LEYYLREKAKMAGTLIIPES

HIAARIAASRAATRRK e s o

§ As reported by Caro-Aguilar and others.”® Asterisk stands for 100% conserved residue
across 68 sequences analyzed.

was the most distant Colombian isolate; it clusters with Asian
sequences, and is a non-previously described allele. These
observations might indicate the introduction of PvMSP-1
alleles from Asian P. vivax. This possibility is not extraordi-
nary given that Buenaventura is the main entrance for most
of the Colombian market arriving through the Pacific Ocean.
Inter- and intra-allelic recombination can be observed among
the Colombian isolates, a factor that can be attributable to
the active internal migration of P. vivax-infected patients and
multiplicity of infection within the study area, which might be
also the explanation why there is a low correlation between
Colombian alleles and the geographical origin.

The distribution of Colombian isolates in the NJ tree resem-
bled very well the allele groups identified. The former was built
based exclusively in conserved blocks 1, 3, and 5; meanwhile,
the allele is defined exclusively in the specific combination of
variables blocks 2a,2b, 2¢,and 4. Such a specific combination of
variable blocks (allele), in some cases, was associated with spe-
cific dimorphic substitution observed in conserved residues of
either variable or conserved blocks. For example, 1) all isolates
having the block 2c basic 3 with the substitution P/S in the
fourth position were finally classified as being allele 33, mean-
while the remaining basic 3 (without the P/S) substitution were
classified as alleles 6 or 20; and 2) a similar effect was observed
with isolates D61 and B74, which always matched together
for variable block 2a—c and shared nine exclusively linked
dimorphic substitutions, five of them in conserved block 1
and four in variable block 4. Despite no clear geographical
relationship, the similarity between them is so strong that it is
possible to propose that the isolate from Buenaventura (B74),
where malaria transmission does not occur, was acquired in La
Delfina (D61), which is a near rural spot for local tourism with
active malaria transmission.

Several non-previously described dimorphic substitutions
and two new alleles were found suggesting that Pv200L from
PvMSP-1 is under evolutionary forces non-equally distributed
along the whole fragment. Such evolutionary forces, which
might be related to the immune response, may have generated
these new alleles by selecting new combinations generated by
mitotic recombination in the asexual blood stages.

Besides the presence of highly conserved fragments in this
protein, several other factors indicate that this protein could
be a suitable target for a vaccine: First, this protein is highly
antigenic as indicated by its recognition by the great major-
ity of individuals from endemic communities in Brazil and
Colombia.” Second, it has been demonstrated that naturally
acquired IgG antibodies directed to the N-terminal region of
PyvMSP-1 are associated with clinical protection to P. vivax-
malaria.”® Third, previously defined promiscuous T-helper

epitopes are located at highly conserved portions of Pv200L
and displayed a high conservation pattern across the 68
sequences of Pv200L.

This is the first study of Pv200L polymorphism in Colombia.
Although the number of isolates is limited, this is the PvMSP-1
polymorphism study with the highest number of P. vivax iso-
lates from the same geographic origin. Such an approach has
allowed us to confirm the mosaic structure of PvMSP-1 and
its inter- and intra-allelic recombinant nature, to illustrate
its specific association with dimorphic substitutions in con-
served blocks, and describe the wide geographic distribution
of highly conserved epitopes, despite the high level of poly-
morphism in this fragment. Further studies with a larger num-
ber of isolates from other endemic regions of the country and
the planet would be required to assess genetic diversity with
greater accuracy, linkage disequilibrium, and population struc-
ture. The presence of highly conserved blocks in this fragment
of the P. vivax MSP-1 protein has important implications for
the development of Pv200L as a subunit vaccine candidate.
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Abstract

Background: Transposition is disruptive in nature and, thus, it is imperative for host genomes to evolve

mechanisms that suppress the activity of transposable elements (TEs). At the same time, transposition also provides
diverse sequences that can be exapted by host genomes as functional elements. These notions form the basis of
two competing hypotheses pertaining to the role of epigenetic modifications of TEs in eukaryotic genomes: the
genome defense hypothesis and the exaptation hypothesis. To date, all available evidence points to the genome
defense hypothesis as the best explanation for the biological role of TE epigenetic modifications.

Results: We evaluated several predictions generated by the genome defense hypothesis versus the exaptation
hypothesis using recently characterized epigenetic histone modification data for the human genome. To this end,
we mapped chromatin immunoprecipitation sequence tags from 38 histone modifications, characterized in CD4+ T
cells, to the human genome and calculated their enrichment and depletion in all families of human Tks. We found
that several of these families are significantly enriched or depleted for various histone modifications, both active
and repressive. The enrichment of human TE families with active histone modifications is consistent with the
exaptation hypothesis and stands in contrast to previous analyses that have found mammalian TEs to be
exclusively repressively modified. Comparisons between TE families revealed that older families carry more histone
modifications than younger ones, another observation consistent with the exaptation hypothesis. However, data
from within family analyses on the relative ages of epigenetically modified elements are consistent with both the

regulate the expression of nearby host genes.

their host genomes.

genome defense and exaptation hypotheses. Finally, TEs located proximal to genes carry more histone
modifications than the ones that are distal to genes, as may be expected if epigenetically modified TEs help to

Conclusions: With a few exceptions, most of our findings support the exaptation hypothesis for the role of TE
epigenetic modifications when vetted against the genome defense hypothesis. The recruitment of epigenetic
modifications may represent an additional mechanism by which TEs can contribute to the regulatory functions of

Background

Transposable elements (TEs) are mobile DNA sequences
that can replicate to extremely high genomic copy num-
bers. TEs are also widely distributed; they have been
found within genomes representing all major eukaryotic
lineages. Accordingly, TEs have had a profound impact
on the structure, function and evolution of their host
genomes. In this study, we explore the relationship

* Correspondence: kingjordan@biology.gatech.edu
'School of Biology, Georgia Institute of Technology, 310 Ferst Drive, Atlanta,
GA 30332, USA

( BioMVed Central

between TEs and the epigenetic regulatory mechanisms
that are thought to have evolved in response to their
proliferation in eukaryotic genomes [1].

Transposition is inherently disruptive in nature.
Therefore, in order to ensure their own survival, host
genomes must have evolved various repressive mechan-
isms to guard against deleterious TE insertions. Epige-
netic regulatory modifications represent a broad class of
silencing mechanisms that may have come into exis-
tence in response to the need to repress TEs [1-4]. The
notion that epigenetic regulatory systems evolved to

© 2010 Huda et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.
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silence TEs is known as the ‘genome defense hypothesis’
[4] and this hypothesis can be taken to make several
predictions regarding the epigenetic modifications of
TEs. According to the genome defense hypothesis, it be
may expected that: (1) younger TEs, that is those that
are potentially active, will bear more epigenetic modifi-
cations than older inactive TEs; and (2) TEs will bear
primarily repressive (gene silencing) modifications rather
than active modifications which are associated with gene
expression.

An alternative hypothesis to the genome defense
model is what we refer to as the ‘exaptation hypothesis’.
An exaptation describes an organismic feature that cur-
rently performs a function for which it was not origin-
ally evolved [5]. In the case of TEs, it is well known that
a number of formerly selfish or parasitic element
sequences have been exapted to provide regulatory and/
or coding sequences that serve to increase the fitness of
the host [6,7]. For instance, TEs can regulate host genes
by serving as the targets of epigenetic histone modifica-
tions that spread into adjacent gene loci [2,8]. TE
sequences that have been exapted are often anomalously
conserved, due to the fact that they are preserved by
natural selection after acquiring a function for the host
genome [9]. For this reason, exapted TEs tend to be
relatively ancient compared to TEs genome-wide.

Consideration of the exaptation hypothesis for TEs in
epigenetic terms also yields several specific predictions.
According to the TE exaptation model, it is expected
that: (1) older and more conserved TEs will bear more
epigenetic marks than younger TEs; (2) both active and
repressive histone modifications will be targeted to TEs;
and (3) TEs closer to genes will bear more histone mod-
ifications than more distal TEs.

Our current understanding of the relationship
between TEs and epigenetic histone modifications is
mainly derived from studies on plants and fungi [10-17].
The vast majority of evidence from these studies points
to the genome defense hypothesis as the best explana-
tion for how and why TEs are epigenetically modified.
For instance, in Arabidopsis thaliana, TE insertions can
trigger de novo formation of heterochromatin by recruit-
ing repressive histone modifications [2,10]. Similarly, in
the yeast Schizosaccharomyces pombe, a classical repres-
sive histone tail modification histone H3 lysine 9 tri-
methylation (H3K9me3) is known to induce the
formation of heterochromatin upon a TE insertion [18].
For both plants and yeast, RNA transcripts generated
from TEs are thought to trigger an RNA interference
related pathway that leads to their epigenetic suppres-
sion [13,14].

To date, only a handful of studies have investigated
the relationship between mammalian TEs and epigenetic
histone modifications. These studies have found that
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mammalian TEs are targeted primarily by repressive his-
tone tail modifications. The first indication of the invol-
vement of repressive histone modifications with human
TEs was unexpectedly discovered by Kondo and Issa in
2003 who found that H3K9me?2 is targeted primarily to
Alu elements in the human genome [19]. A couple of
years later, Martens et al. reported varying levels of TE
enrichment for repressive marks in repetitive DNA in
mouse embryonic stem cells [20]. Recently, a genome-
wide map of several histone tail modifications in mouse
was published by the Bernstein and Lander groups
[8,21]. They found that intracisternal A particle (IAP)
and early transposon (ETn) elements were the only
families of TEs enriched in repressive histone marks.
IAP and ETn are young and active lineages of long
terminal repeat (LTR) - retrotransposons and their tar-
geting by repressive modifications is consistent with the
host’s need to suppress their activity. Another recent
study in the mouse by the Jenuwein group also found
an enrichment of the repressive mark H3K27me3 in
silent genes and nearby short interspersed nuclear ele-
ments (SINEs) [22]. Thus, the majority of evidence to
date points to the genome defense hypothesis as the
best explanation for the role of epigenetic modifications
targeted to mammalian TE sequences.

Recently, a series of chromatin immunoprecipitation
followed by high-throughput sequencing (ChIP-Seq)
experiments have been performed by the Keji Zhao
group, which together yield a genome-wide map of his-
tone tail modifications in human CD4* T cells [23,24].
These data provide a unique opportunity to qualitatively
and quantitatively investigate the relationship between
epigenetic histone modifications and human TEs, and to
test the predictions of the genome defense hypothesis
versus the exaptation hypothesis.

Results and discussion

Characterization of TE histone modifications

Previously, a series of ChIP-Seq analyses were used to
determine the genome-wide distributions of 38 histone
tail modifications in human CD4" T cells [23,24]. For
these studies, sequence tags corresponding to specifically
modified histones were characterized using the Illumina-
Solexa platform and the tags were mapped to the human
genome sequence using the software provided by the
vendor. This approach only yields unambiguously
mapped sequence tags that correspond to unique geno-
mic locations. In other words, all tags that map to repeti-
tive sequences are eliminated from consideration. Since
we are analysing TEs here, many of which are repetitive
DNA sequences, we used our own mapping procedure
(see Methods) to recover many of the sequence tags that
map to more than one location in the genome and there-
fore had been discarded in the previous studies.
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Our tag-to-genome mapping procedure yielded a total
of 369,225,759 mapped sequence tags over the 38 his-
tone modifications. This figure represents an increase of
144,125,239 tags (64%) over the previously employed
mapping procedure, for an average increase of 3,792,769
tags per modification. Differences in the numbers of
mapped tags for each histone modification can be seen
in Additional file 1, Figure S1. For human TE sequences,
we mapped an additional 77,065,760 tags over the 38
modifications.

The genome defense hypothesis for TE epigenetic
modifications predicts that TEs will bear primarily
repressive, rather than active, histone tail modifications,
whereas the exaptation hypothesis holds that both active
and repressive histone modifications will be targeted to
TEs. The histone tail modifications analysed here were
characterized as active or repressive based on their
enrichment in genes with different CD4" T cell expres-
sion levels using a previously described approach [24].
To apply this approach, we established presence/absence
calls for each modification in the promoter regions of
human genes by comparing promoter modification tag
counts to corresponding genomic background tag
counts as described in the Methods. We then calculated
the fold enrichment of expression by comparing the
average CD4" T cell expression level of genes marked as
present for a particular modification with the average
expression level of genes that do not display any enrich-
ment of the same modification (Additional file 1, Figure
S2). There are 28 histone tail modifications character-
ized as active using this approach and 10 modifications
characterized as repressive. This method reveals the
effects of individual histone modifications on gene
expression, presumably based on how they help to
determine open versus closed chromatin states. In other
words, active modifications are associated with the
active expression of human gene sequences, whereas
repressive modifications are associated with gene silen-
cing. Accordingly, the genome defense hypothesis would
predict the targeting of potentially active TEs with
repressive histone tail modifications.

A variety of TEs are found in the human genome [25].
Retrotransposons constitute the vast majority of these
sequences with Alu and L1 being the youngest and
most abundant families and MIR and L2 being older
inactive lineages of SINEs and LINEs, respectively. LTR
retrotransposons are a less abundant but more diverse
group of retrotransposons, with very few extant subfa-
milies. DNA-type elements make up a distinct class of
TEs, which are substantially less abundant than retro-
transposons in the human genome. We evaluated the
relative enrichment of each histone tail modification
over six classes (families) of human TEs: Alu, L1, LTR,
DNA, L2 and MIR (Figure 1). To do this, a fold-change
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approach similar to that used to characterize active ver-
sus repressive modifications was used. For each histone
tail modification, the TE family-specific tag counts were
compared against the genomic background for that
modification (Methods). Thus, the fold-change values
represent the extent to which TE families are enriched
or depleted for each of the 38 histone tail modifications.
This generated a total of 228 (6 x 38) TE-by-modifica-
tion fold-change values, all of which were statistically
significant (Additional file 1, Table S1; G test 0 = P <
2.1e-5). TE epigenetic histone modifications vary widely
according to the TE family, as well as the identity of the
specific modification. There are numerous active and
repressive modifications that are enriched for different
TE families. Some families, such as Alu and L2, appear
to be enriched for active modifications, whereas others,
such as L1 and LTR, are depleted for active modifica-
tions and/or enriched for repressive modifications.
Cleary, human TE sequences are bound by histones that
are subject to numerous active and repressive epigenetic
modifications.

Human TEs are distributed non-randomly across the
genome with respect to gene locations and guanine-
cytosine (GC) content. For instance, Alu elements are
enriched in and around genes in high GC rich regions
of the genome, whereas L1 elements are found primarily
in AT rich DNA in intergenic regions [25]. Thus, using
the entire genomic background of histone modification
tag counts to compute the modification enrichments for
TE families with distinct genomic distributions could
bias the results. In order to control for this possibility,
we re-calculated the enrichment of histone modifica-
tions by comparing the histone modification tag counts
of each TE to a background tag count computed from a
genomic window encompassing that TE (Methods). This
local approach to computing TE histone modification
enrichments does not qualitatively change the results
obtained when compared to the global approach.
Indeed, the TE-histone modification enrichment ratios
computed using global versus local histone modification
background tag counts are highly correlated (0.91 = r =
0.99) for each of the six classes (families) of TEs evalu-
ated (Additional file 1, Figure S3). For comparison, the
relative enrichments of TE-histone tail modifications
calculated in this way are shown in Additional file 1,
Figure S4. Whether the TE-histone modification enrich-
ments are computed using global or local modification
tag counts, human TEs show evidence of being targeted
by a number of different active and repressive epigenetic
marks.

Active versus repressive TE histone modifications

The genome defense hypothesis for TE epigenetic modi-
fications predicts that TEs that are capable of transposi-
tion will be targeted by repressive histone modifications
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Figure 1 Enrichment or depletion of 38 individual histone modifications in transposable element (TE) families. Log2 normalized ratio of

the number of tags of each of the 38 histone modifications located within each TE family over the total number of tags taken as the genomic

background is shown. Statistical significance determined by the G test (see Additional file 1, Table S1).

in order to suppress their activity. The exaptation
hypothesis, on the other hand, predicts that older and
more conserved TEs will bear more epigenetic marks.
These older TEs will have lost the ability to transpose
and are more likely to have been exapted to play some
role for their host genome. To distinguish between
these models, we correlated the histone tail modification
enrichment for specific TE families with the histone tail
modification gene expression enrichment values. The
genome defense hypothesis would predict a negative
correlation since repressive modifications should target
actively expressing TEs with the potential to transpose,
whereas the exaptation model may predict a positive
correlation or no correlation at all. None of the TE
families shows a statistically significant relationship
between TE and gene expression enrichment for indivi-
dual histone modifications (Figure 2 and Additional file
1, Table S2). The same analysis was done using the
local approach to computing the histone modification
background tag counts, as described in the previous sec-
tion, and the results are qualitatively similar when this
technique is applied (Additional file 1, Figure S5). These
results are not consistent with the genome defense
hypothesis, but it is unclear whether they reflect the
absence of genome defense, exaptation or some combi-
nation thereof.

To further evaluate the active versus repressive TE
modification predictions for the genome defense versus
exaptation hypotheses, we grouped and summed the his-
tone tail modification tags into the 28 active and 10

repressive modifications. The enrichment of active and
repressive modifications was calculated by co-locating
the tags from each class with TE sequences from each
family and comparing the TE family-specific active or
repressive tag counts with the genomic background. The
data shows considerable variation between active and
repressive modification enrichments in different lineages
of TEs (Figure 3). Alus and L1s are significantly
depleted in both active and repressive modifications,
with relatively fewer active modifications. LTR elements
show depletion for active modifications and enrichment
for repressive modifications, which is entirely consistent
with the predictions of the genome defense model. On
the other hand, L2 and mammalian-wide interspersed
repeat (MIR) elements show enrichment for both active
and repressive modifications consistent with the exapta-
tion model.

The data on active versus repressive histone modifica-
tions for TE families also bears on the predictions relat-
ing epigenetic modifications to the ages of TEs. The
genome defense hypothesis predicts that potentially
active younger TEs will bear more epigenetic modifica-
tions than older TEs, while the exaptation model pre-
dicts that more ancient conserved TEs will bear more
epigenetic modifications. The different families of TEs
shown in Figure 3 have different relative ages, on aver-
age, with Alu elements being the youngest and MIRs
being the oldest [young-to-old: Alu-L1-LTR-DNA-L2-
MIR] [25]. The enrichments of both active and repres-
sive modifications are positively correlated with the age
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Figure 3 Enrichment or depletion of active and repressive
histone modifications in retrotransposons. Histone modifications
were classified as active or repressive based on expression
enrichment (Additional file 1, Figure S2). The log2 normalized ratios
of the number of tags of active or repressive modifications located
within each family of retrotransposons over the total number of
tags taken as the genomic background is shown. Retrotransposon
families are arranged according to their relative ages. Spearman
rank correlations (p) between active and repressive transposable
element (TE)-modification enrichments (depletions) and the relative
ages of TE families are shown.

of the TE families (Figure 3); in other words, older
families of elements tend to be more modified than
younger families. The same analysis was done using the
local approach to computing the histone modification
background tag counts, as described in the previous sec-
tion, and the results are qualitatively similar when this
technique is applied (Additional file 1, Figure S6). These
data are consistent with the exaptation hypothesis for
TE modifications, as opposed to the genome defense
model, and suggest that many older TE sequences may
be preserved, at least in part, due to the contributions
they make the epigenetic environment of the human
genome.

TE ages and histone modifications

The divergence of an individual TE insertion from its
subfamily consensus sequence is a barometer of the
time elapsed since its insertion and is, thus, a good mea-
sure for its relative age [25]. As shown in Figure 3, a
comparison between TE families indicates a positive
correlation between element ages and the extent of his-
tone tail modifications. This observation is consistent
with the exaptation hypothesis, which predicts that
older TEs will bear more epigenetic modifications. How-
ever, these results may be confounded by comparisons
between families made up of very different kinds of TEs
with distinct insertion mechanisms, genomic
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distributions and life histories. In order to evaluate the
relationship between element ages and histone tail mod-
ifications in a more controlled way, we compared the
extent of TE histone modifications with the relative ages
of TE insertions within the Alu and L1 families of ele-
ments. The Alu and L1 families were chosen for two
reasons: first, they are numerous and abundant provid-
ing statistical resolution on the question; secondly, and
more importantly, they have well-characterized subfami-
lies the relative ages of which are known [25-27]. The
relative ages of individual Alu and L1 insertions can be
inferred by comparing their sequences to the consensus
sequences of their subfamilies (Additional file 1, Figures
S11 and S12) and these data are provided in the output
of the RepeatMasker program used to annotate the ele-
ments. We computed the average element-to-subfamily
consensus sequence divergence for all Alu and L1 subfa-
milies and compared these values to the extent of active
and repressive histone modifications that map to mem-
bers of the individual subfamilies.

The within-family analyses of the relationship between
the relative ages of Alu elements and their histone mod-
ifications yield results that are most consistent with the
exaptation hypothesis (Figure 4a). Alu element ages are
significantly positively correlated with both active (p =
0.94, P = 4e-20) and repressive (p = 0.92, P = 9e-18)
histone modifications (Additional file 1, Table S4).
These data indicate that members of older Alu subfami-
lies are subject to more active and repressive modifica-
tions, which stands in contrast to the prediction of the
genome defense model that younger elements should be
more repressed.

The relationships between the ages of L1 elements
and their histone modification states appear to support
both the genome defense and exaptation models (Figure
4b). The ages of L1 elements are negatively correlated
with repressive modifications (p = -0.39, P = 5e-6) and
positively correlated with active modifications (p = 0.71,
P = 4e-20) (Additional file 1, Table S4). The relative
abundance of repressive modifications of younger L1s is
consistent with the genome defense model, whereas the
data for the increasing active modifications of older L1
elements are consistent with the exaptation model.
Taken together, the within-family data for Alu and L1
elements display a complex view of the relationship
between TE ages and histone modifications suggesting
interplay between the genome defense and exaptation
hypotheses.

TE-gene locations and histone modifications

The exaptation hypothesis predicts that TEs proximal to
host genes would bear more histone modifications than
those that are distal to genes, since these modifications
are more likely to effect the regulation of the genes. In
order to test this prediction, we analysed the Alu and
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Figure 4 Age of Alu and L1 elements versus their histone modifications. Relative ages of Alu (a) and L1 (b) subfamilies, as determined by
divergence from subfamily consensus sequences, are plotted against their respective tag counts normalized by genomic length. Spearman rank
correlations (p) between tag counts and percent divergence are shown for active (red) and repressive (green) modifications separately
(significance values are in Additional file 1, Table S4).

L1 TE families and associated every TE sequence to the
nearest gene. The corresponding tag counts of active
and repressive histone modifications in TEs were binned
according to their distance from genes. Only uniquely
mapped TE-tags that could be assigned unambiguous
genomic locations were used for this analysis. Alu and
L1 were chosen both for their genomic abundance and
for the fact that they have distinct genomic distribu-
tions: Alus are enriched near genes, whereas L1s are
found more often in intergenic regions. For both Alu
and L1, we observed negative correlations (Alu active p
= -0.38, P = 5e-5, Alu repressive p = -0.67, P = 9e-14,
L1 active p = -0.27, P = 0.003, L1 repressive p = -0.01,
P = 0.46) between TE insertion distances from genes
and histone modifications (Figure 5 and Additional file
1, Table S3). Moreover, TEs that lie within gene bound-
aries are modified at much higher levels compared to
those outside of genes. These findings are in agreement
with the exaptation hypothesis. The same analysis was
done using both unique and repetitively mapping tags,
and the results are qualitatively unchanged when this
more comprehensive approach is taken (Additional file
1, Figure S7).

Conclusions

Comparison with previous results

While most work to date on mammalian histone modifi-
cations has focused on non-repetitive DNA, there have
been four recent studies on the histone modification sta-
tus of mammalian repetitive sequence elements, three in
mouse [8,20,22] and one in human [19]. The previous
studies focused on repressive histone modifications and

they turned up a number of cases where mammalian
TEs, including SINEs, LTR and DNA elements, were
found to be enriched for specific histone modifications.
We compare the results of these previous studies with
the findings reported here in Table 1. Interestingly, the
results reported here agree and disagree with those of
previous studies in equal measure. When specific his-
tone modifications are considered for individual TE
classes, there are six cases where histone modifications
previously identified to be enriched for a given TE class
are enriched in the same class in our study, and there
are six cases where previously enriched TE-modifica-
tions are found to be depleted here. These discrepancies
underscore the extent to which histone modifications,
particularly those that target TEs, may be cell-type spe-
cific, since the different studies that are being compared
analysed different cell types. Indeed, the study of Mar-
tens et al. evaluated multiple cell types and found that
histone modifications of TEs were more variable across
cell types than those of tandem satellite repeats [20].
This was attributed to the fact that tandemly repeated
DNA, such as that found around centromeres, form
more stable chromatin architectural elements and tan-
dem repeats are present in more constitutively hetero-
chromatic environments. Interspersed repeats, on the
other hand, may be more prone to cell-type specific in
situ formation of heterochromatic regions dispersed
among the euchromatic portion of the genome. This has
been seen in plants where insertions of TEs lead to the
localized spread of repressive chromatin [2]. In any case,
a deeper understanding of how human TEs are epigen-
etically modified, along with the regulatory implications,
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are in Additional file 1, Table S3.

will require a comparison of TE-modifications across a
variety of cell types.

Exaptation as a local or global phenomenon

Exaptation refers to the evolutionary process whereby an
organismic feature comes to play some role for which it
was not originally evolved or selected [5]. TEs are pri-
marily selfish genetic elements that evolved solely virtue
of their ability to transpose and thus out-replicate the
host genomes in which they reside [28,29]. They do not
owe their evolutionary success to any ability to provide
functional utility to their hosts. However, at this time it
is widely recognized that a number of individual TE
sequences have been exapted to play some positive role
for their host genomes [6,7]. Exaptation of individual TE
sequences may include cases where TEs become incor-
porated into host protein coding genes or cases where

TEs provide regulatory sequences that help to control
the expression of host genes. Such examples of TE exap-
tation are very much in keeping with the original defini-
tion of exaptation as referring to a series of individual,
and largely contingent, cases. However, the genome-
scale approach taken here to exploring the implications
of TE epigenetic modifications entails the consideration
of exaptation as a more global, rather than a strictly
local, phenomenon. This is because there are particular
features of TEs, specifically their ability to recruit epige-
netic modifications, which are shared across many ele-
ments over the entire genome and which, in turn, allow
individual insertions to be exapted. This does not mean
that all TEs in the genome are exapted. Rather, the data
reported here suggest that there are genome-scale sig-
nals, in terms of how the TEs are epigenetically
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Table 1 Comparison of transposable element (TE) histone
modification enrichments found in this study with those
of previous studies.

Enriched in previous study® Status in current study®

Kondo and Issa 2003 (Human) [19]

SINE: H3K9me2 Depleted
Martens et al. 2005 (Mouse) [20]
SINE: H3K9me3 Depleted
SINE: H3K27me3 Enriched
SINE: H4K20me3 Depleted
LTR: H3K9me3 Enriched
LTR: H3K27me3 Enriched
LTR: H4K20me3 Depleted
DNA: H3K27me3 Enriched
DNA: H4K20me3 Depleted
Mikkelsen et al. 2007 (Mouse) [8]
LTR: H3K9me3 Enriched
LTR: H4K20me3 Depleted
Pauler et al. 2008 (Mouse) [22]
SINE: H3K27me3 Enriched

@ TE classes (SINE, LINE, LTR or DNA) that were shown to be enriched for
specific histone modifications (as shown) in previous studies.

P Status of the same TE class-histone modification pairs as enriched or
depleted in this study

modified, which indicate an overall potential for indivi-
dual human TE sequences to be exapted. Consideration
of exaptation as a global or genome-scale phenomenon
as it relates to TEs reveals how inherent features of the
elements, such as their ability to be transcribed or their
dispersed repetitive nature, serve to recruit the very epi-
genetic machinery that will allow them to affect the reg-
ulation of nearby genes. Having established this global
pattern of TE epigenetic exaptation, further inquiry can
now be used to identify individual cases of interest. We
give specific examples of how individual cases of TE epi-
genetic exaptation may be uncovered in the following
section.

Caveats and future directions

As mentioned previously, TE epigenetic modifications
are certain to be cell-type specific to some extent. Here,
we only analysed histone modifications of human TEs
in a single cell type - CD4" T cells. As more and more
genome-scale histone modification data sets become
available, it will become possible to systematically evalu-
ate changes in the histone modification states of TEs
across tissues. This is particularly relevant for a deeper
interrogation of the genome defense hypothesis. Vertical
transmission (inheritance) of novel TE insertions, along
with their mutagenic effects, is dependant upon trans-
position events that occur in the germline, as opposed
to TE insertions in somatic tissue, which is an evolu-
tionary dead end. For this reason, one may expect that
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the most vigorous genome defense mechanisms would
be employed in germline tissue. Thus, it is possible that
the predictions of the genome defense model, which are
not supported for the most part in this study, may be
borne out if germline tissue was evaluated in the same
way as done here for somatic tissue. However, there is
some evidence that suggests this may not be the case
for human TEs. Alu elements, which make up a huge
fraction of the methylated DNA in the human genome
in somatic tissues, are actually hypomethylated in the
male germline [30]. This may represent an evolutionary
strategy for the elements, whereby the TEs mitigate
their deleterious effects in somatic tissue by reducing
transposition therein and yet allow for the transmission
of new insertions across generations by relaxing element
suppression in the germline [31]. This kind of strategy
can be seen for P elements in Drosophila, which utilize
alternative splicing to encode a repressor protein in
somatic tissue and a transposase in the germline [32].
Nevertheless, a better understanding of the role epige-
netic histone modifications in the repression of heritable
TE insertions will require the analysis of germline
tissue.

The genome-wide mapping of 38 histone modifica-
tions in the human genome enabled us to thoroughly
investigate the relationship between TEs and epigenetic
histone modifications. We tested several predictions
generated by two competing hypotheses - the genome
defense hypothesis and the exaptation hypothesis - in
the light of epigenetic histone modifications. Consistent
with the exaptation hypothesis, we found that the over-
all enrichment of histone modifications is positively cor-
related with the increasing age of TE insertions, and
TEs proximal to human genes bear more histone marks
than TEs distal to genes. We also found support for the
genome defense hypothesis for certain cases, but the
majority of our data and analyses support the exaptation
hypothesis.

Thus, for the human genome, some epigenetic modifi-
cations of TEs may serve to regulate the expression of
host genes rather than to silence the elements them-
selves. More definitive proof of epigenetically related
exaptation of TEs will require the analysis of individual
cases whereby specific TE sequences have been exapted
to regulate host genes. These could include TE-derived
promoter sequences, which provide local regulatory
sequences and transcription start sites to host genes,
and/or TE-derived enhancers that regulate genes from
more distal locations. An evaluation of how such TE-
derived regulatory sequences are epigenetically modified
across different cell types along with an examination of
how cell-type specific modifications correspond to
expression differences should help to reveal epigenetic
routes by which TEs influence their host genomes.
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Methods

Tag-to-genome mapping

The genome-wide distributions of 38 histone tail modifi-
cations were previously evaluated in human CD4" T
cells using ChIP-Seq with the Illumina-Solexa platform
[23,24]. The mapping protocol used in these studies did
not allow for the consideration of histone modifications
at repetitive DNA sequences, since they removed redun-
dantly mapping sequence tags. Therefore, we employed
a heuristic mapping procedure for the data generated in
these ChIP-Seq studies in order to be able to analyse
sequence tags that map to repetitive DNA. To do this,
we downloaded 140 sequence tag libraries correspond-
ing to the 38 previously characterized CD4" T cell his-
tone tail modifications from the NCBI Short Read
Archive (SRP000200 and SRP000201) [33]. Sequence
reads and their respective quality scores were converted
from Illumina-Solexa format to the standard (Sanger)
fastq format, and the MAQ (Mapping and Alignment
with Qualities) program was used to map each fastq
library to the March 2006 human genome reference
sequence (NCBI Build 36.1, hgl8 assembly). MAQ uses
a mapping algorithm that utilizes the tag sequences
along with their quality scores to determine the highest
scoring match to the genomic location [34]. MAQ was
run in such a way that tags with more than one identi-
cally scoring best tag-to-genome alignment, i.e. repeti-
tively mapping tags, were randomly assigned to one
genomic location. This procedure allowed us to avoid
the elimination of sequence tags that have high scoring
tag-to-genome alignments but map to more than one
location. Since human TEs can be characterized into
related groups (classes, families and subfamilies), using
this heuristic mapping procedure provides an unambigu-
ous way to evaluate differences in the frequencies of
specific histone modifications between related groups of
TEs.

Gene expression-histone modification enrichment analysis
We downloaded the Refseq annotations of experimen-
tally characterized transcription start sites from the
database of transcription start sites (DBTSS) [35,36],
and mapped them to the human genome reference
sequence (hgl8) at the UCSC Genome Browser [37].
CD4" T cell expression data corresponding to the
mapped Refseq genes were taken from the Novartis
Gene Expression Atlas 2 [38]. We were able to obtain
unambiguously mapped transcription start sites and
gene expression data for 12,644 human genes. We
defined promoter regions as 1000 nucleotides
upstream and 200 nucleotides downstream of the tran-
scription start sites. We located the number of tags
corresponding to each histone tail modifications in
each promoter region. The number of tags of each
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modification in a promoter region was converted to a
binary presence/absence call using a genomic back-
ground tag distribution and a conservative threshold
determined by the Poisson distribution and incorporat-
ing Bonferroni correction for multiple tests [24].

Combing the CD4" T cell gene expression data with
promoter histone modification presence/absence calls,
we calculated the expression enrichment for each his-
tone modification using the following formula:

Expression fol. dchange=logz[ average expre'ssionof genes With modiﬁc_atio.n ]
average expression of genes without modification

In addition, for each histone tail promoter modifica-
tion, the significance of the difference in average CD4"
T cell gene expression levels for genes with and without
the modification was evaluated using the Student’s ¢-
test.

TE-histone modification enrichment analysis

We downloaded RepeatMasker [39] annotations (ver-
sion 3.2.7) of TE locations for the human genome
reference sequence (hgl8) from the UCSC genome
browser. Using the TE genomic coordinates and our
tag-to-genome mapping data, we co-located the tags
that correspond to each histone tail modification with
TE sequences in the human genome. In this way, we
obtained the number of tags of each histone tail modi-
fication that map to TE sequences in the human
genome.

The TE-histone modification mapping dataset was
divided into six classes (families) of TEs [40,41] which
are: Alu, MIR, L1, L2, DNA transposons and LTR-ret-
rotransposons. We normalized the number of histone
modification tags in each class (family) of TE
sequences by the total genomic length of these TE
sequences in the class (family), and compared the nor-
malized TE tag counts to either (1) genome-wide back-
ground tag counts or (2) locally computed genomic
background tag counts. Genome-wide background tag
counts are the total number of tags for each modifica-
tion divided by the length of the genome. To obtain
local histone modification background tag counts for
TE classes (families), for each individual TE insertion,
a background tag count was computed by randomly
sampling a non-TE sequence of the same size from
within a 1 megabase genomic window surrounding
that TE. These individual local background tag counts
were then averaged over all TE insertions of a given
class (family). The following formulas were used for
enrichment calculations:

Normalized tag count in TE sequences
TE fold change yy,, 11, L1r, DNA, MIR, L2 = ( d a J

Normalized tag count in genomic background
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where

. in TE
Normalized 1ag count yogeaom -3 = >, tags located in TE sequences
> length of TE sequences

Statistical analyses

The statistical significance of TE-histone modification
enrichment values were calculated using the goodness of
fit G-test, which uses a log-likelihood ratio comparing
the observed to expected tag counts. The P-value
thresholds for the G-tests were adjusted using the Bon-
ferroni correction for multiple tests. Prior to correlation
analysis, all data distributions were checked for normal-
ity using Q-Q plots to visually compare the observed
distributions against theoretical normal distributions
(Additional file 1, Figures S8-S10). Data with distribu-
tions that were deemed to be normal were correlated
using Pearson correlation (r) and data with distributions
that were deemed to be non-normal were correlated
using Spearman rank correlation (p). Note that when
data are binned, such as for the distance from gene
computation, correlations are calculated on the
unbinned data. Statistical significance values for correla-
tions were computed using an approximation to the
Student’s ¢-distribution with #-2 degrees of freedom
[42].

Additional file 1: Supplementary material. Figures S1-12 and Tables
S1-4 are included in the supplementary material file.

Click here for file

[ http://www.biomedcentral.com/content/supplementary/1759-8753-1-2-
S1.PPT]
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ABSTRACT

Initiation and regulation of gene expression is criti-
cally dependent on the binding of transcriptional
regulators, which is often temporal and position
specific. Many transcriptional regulators recognize
and bind specific DNA motifs. The length and
degeneracy of these motifs results in their frequent
occurrence within the genome, with only a small
subset serving as actual binding sites. By occupying
potential binding sites, nucleosome placement can
specify which sequence motif is available for
DNA-binding regulatory factors. Therefore, the
specification of nucleosome placement to allow
access to transcriptional regulators whenever and
wherever required is critical. We show that many
DNA-binding motifs in Saccharomyces cerevisiae
show a strong positional preference to occur only
in potential regulatory regions. Furthermore, using
gene ontology enrichment tools, we demonstrate
that proteins with binding motifs that show the
strongest positional preference also have a ten-
dency to have chromatin-modifying properties and
functions. This suggests that some DNA-binding
proteins may depend on the distribution of their
binding motifs across the genome to assist in the
determination of specificity. Since many of these
DNA-binding proteins have chromatin remodeling
properties, they can alter the local nucleosome
structure to a more permissive and/or restrictive
state, thereby assisting in determining DNA-
binding protein specificity.

INTRODUCTION

At any given point in time, cells are performing complex
programs of gene expression. The binding of tran-
scriptional regulators to target genes determines their
expression or repression. Many DNA-binding proteins
(DBPs) recognize and bind specific DNA sequence
motifs located within specific regulatory regions of the
gene. However, the length and nucleic acid composition
of these binding motifs frequently enables their random
occurrence within the genome, sometimes up to thousands
of repetitions. Therefore, sequence information alone is
insufficient to completely determine specificity (1,2).
Within the nucleus, DNA exists in complexes with
RNA and proteins called chromatin. Commonly com-
posed of an octamer of histone proteins consisting of
two copies each of histones H2A, H2B, H3 and H4,
nucleosomes are the basic repeating units of chromatin
[for review see ref. (3)]. DNA wraps around the histone
octamer core in approximately two superhelical turns.
These cores are spaced ~10-80bp apart; this inter-
nucleosomal DNA is referred to as linker DNA. This
DNA can vary in length significantly, even between neigh-
boring nucleosomes. DNA within nucleosomes is less
accessible to DBPs, including transcriptional regulators
(4). It has long been thought that by occupying potential
binding sites, nucleosomes play an indirect role in
regulating gene expression (4-7). However, this raises
the question of how the structure of chromatin is con-
structed initially to ensure the availability of sites for
transcriptional regulator binding. It is likely that inherent
signals within the DNA sequence play an important role
in positioning nucleosomes (8,9). Also critical are
chromatin remodeling factors (CRFs) that reposition or
modify nucleosomes (8,10-13), thereby repressing or
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enhancing transcription. Whether and how CRFs act to
modify chromatin structure to a more permissive/restric-
tive state remains unknown. One possibility is that CRFs
rely on the quality and genomic position of their DNA
sequence motifs to help establish specificity. In this study,
we investigated this hypothesis by examining the
positional distribution of predicted binding sites for 184
DBPs in the Saccharomyces cerevisiae genome.

MATERIALS AND METHODS
Calculating promoter enrichment scores

Transcription start sites (TSSs), as well as promoter and
coding sequences, were obtained from the UCSC genome
browser (14). The Mining Yeast Binding Sites (MYBS)
database was used to obtain 666 position weight matrices
(PWMs) (15). The Sptl0 PWM was obtained from
ref. (16) for a total of 667 PWMs. Promoters were
defined as regions extending 1000 bp upstream of TSSs,
excluding any coding sequence. Each PWM was used to
score both promoter and coding sequences while looking
for subsequences that closely match the binding motif rep-
resented by the PWM. The score of each subsequence was
derived from the sum of the position-specific score of each
nucleotide composing the subsequence. For a subsequence
of length I(s;...s) with length / equal to the number of
columns in the PWM, the score was calculated as

!
Score = E my, j 1
T
J=1

where S; represents the nucleotide at position j of
subsequence s and m; ; represents the score in the PWM
for row i and column ;.

We randomized the sequence of interest by shuffling the
nucleotides while retaining the overall nucleotide compo-
sition. Then each set of randomized sequence was scanned
against the set of PWMs and the number of high-scoring
matches was counted. The randomization was performed
800 times, and the mean and standard deviation for the
number of matches expected in the randomized sequence
for a given PWM was calculated. A z-score representing
the degree of sequence motif enrichment was calculated
using

X —u

7= , 2

oy

where x is the number of high-scoring matches for the
unshuffled sequence, u, is the mean number of
high-scoring matches for 800 sets of shuffled sequences,
and o, is the standard deviation for the group of 800
sets of shuffled sequences. We then used the calculated
z-scores from the promoter and coding sequence to calcu-
late a promoter enrichment score (i.e. promoter z-score —
ORF z-score) for each PWM.

To perform this analysis, it was necessary to select a
cutoff score. Therefore, similar to other comparable
studies (17), a cutoff score representing 70% of the
maximum possible score for a given PWM was chosen.
Results from analyses using cutoff scores representing 80
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and 90% of the maximum possible score showed little
differences.

Gene ontology (GO) analysis

The set of PWMs was filtered using the methods outlined
below and then ranked according to the promoter prefer-
ence score. Finally, using the online David GO tool, we
searched for enriched GO terms (18) in the top 20% of
PWMs (N = 37). As a control, we assessed the set of all
proteins (184) represented by the collection of 667 PWMs
used in this study. To avoid the use of an arbitrary per-
centile cutoff, we also applied the online Gene Ontology
enRIchment analLysis and visuaLizAtion (GOrilla) tool
(19) to our set of ranked proteins. GOrilla uses a flexible
threshold technique to search for GO terms enriched in a
ranked list.

The set of PWMs used contained considerable redun-
dancy (i.e. many DBPs are associated with multiple
PWMs). To perform the GO analysis, it was necessary
to filter the set of 667 PWMs to obtain a unique set of
184 PWMs to pair with the 184 unique proteins. Two
different filtering methods were used to determine which
PWM out of the set of PWMs associated with a given
DBP would be used when ranking the protein. With the
first method, we filtered PWMs based on the promoter
enrichment score. The PWM with the highest promoter
enrichment score from the set of PWMs was selected to
pair with that protein. Each protein was then ranked
according to the promoter enrichment score of its paired
PWM and GO analysis performed as outlined above.
Using this method, both analysis tools identified GO
terms related to chromatin modification for the highly
ranked proteins. With the second method, we filtered the
PWMs according to information content. The PWM with
the highest information content was selected to pair with
its associated protein. We repeated the above analysis
using both GO tools. Using the David tool, we again
identified an enrichment of chromatin modifying GO
terms for highly ranked proteins (P<0.05). However,
GOirilla did not reveal any GO terms possibly due to the
stringent cutoff (P<0.001) of this tool.

Nucleosome overlap score

With the set of high-scoring matches in promoter regions
and a map of nucleosome positions produced in a recent
study (20), we calculated the fraction of predicted binding
sites that overlapped with a well-positioned nucleosome
for each PWM. Nucleosomes, unlike many DBPs, do
not necessarily have a well-defined binding site. Instead,
they may have multiple binding locations in different cells
for the same nucleosome. For each nucleosome, Mavrich
et al. (20) calculated a ‘fuzziness score’ that represented
the extent a nucleosome varies its binding location. To
obtain a list of well-positioned nucleosomes we ranked
all nucleosomes by their fuzziness score and took the
top 15%.

To calculate the significance of the observed overlap of
predicted binding sites with well-positioned nucleosomes,
we randomly changed the positions of the predicted
binding sites within a 1000-bp window and calculated
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the fraction of randomized sites that overlapped with a
well-positioned nucleosome. After 1000 iterations, the
mean and standard deviation of nucleosome overlap
were estimated. In addition, a concurrent z-score repre-
senting the degree of nucleosome overlap above or
below random chance was calculated according to
Equation (2), where x was the fraction of high-scoring
matches that overlapped a nucleosome, u, was the mean
fraction of high-scoring matches that overlap a
nucleosome calculated based on 1000 random permuta-
tions, and o, represented the standard deviation of the
fractional overlap of the randomly moved high-scoring
matches.

Promoter regions have a tendency to contain
nucleosome-depleted regions (21). To control for potential
bias, we randomly changed the predicted binding site loca-
tion within a 1000-bp window that was centered on the
binding site. In doing so, the randomly permuted binding
sites were still mostly positioned within the same local
chromatin structure. A 1000-bp window will almost
always include some of the neighboring ORF sequences.
Thus, while restricting the randomization to a defined
window reduces the effect of simply being within a pro-
moter region, it does not eliminate it entirely. One could
argue that our results indicating a strong bias toward pro-
moter regions for some motifs exacerbate this issue.
However, in our calculation of nucleosome occupancy,
we only used those sites found in promoter regions.
Hence, promoter bias should not play a significant role
in these analyses. For each PWM we paired its promoter
enrichment score with its nucleosome overlap score and
calculated the correlation using Spearman rank correla-
tion. Correlation coefficients were calculated using those
PWMs with at least 50 predicted binding sites.

Within promoter positional analysis

For each high-scoring promoter region match, we
calculated the distance to the closest TSS. Predicted
binding sites that could not be mapped to a TSS were
discarded. Sequence motifs that were highly ‘location con-
strained’ within promoter regions clustered together. For
every PWM that had at least 50 predicted binding sites
within promoter regions, we obtained the distance from
the TSS for every high-scoring match (i.e. predicted
binding site) and then calculated the mean, median and
semi-interquartile range for the distance distribution. The
smaller the semi-interquartile range, the more clustered
the predicted binding sites were and the stronger the loca-
tion constraint within promoter regions.

RESULTS

Many DBP sequence motifs displayed strong preferences
for promoter regions as opposed to coding regions

Sequence motifs for DBPs are commonly represented by a
position weight matrix (PWM) (1,22). We obtained a set
of 667 PWMs representing binding motifs for 184 DBPs
from the MYBS database (15). For each PWM we
calculated a promoter enrichment score. The larger the

score, the more enriched the sequence motif was in pro-
moter regions relative to coding regions.

Not surprisingly, most sequence motifs showed dramat-
ically greater enrichment in promoter regions than in
coding regions (Figure 1). For example, Orclp, which
has been demonstrated to function in chromatin modifi-
cation (23), displayed the greatest difference in enrichment
between promoter and coding sequence. For this sequence
motif, the number of high-scoring matches within the pro-
moter region was 1240, corresponding to a z-score of 261.
Meanwhile, the number of high-scoring sequence motif
matches within coding sequence was 38, corresponding
to a z-score of —0.88. Yeast contains ~8.4 Mb of coding
sequence compared to ~2.5Mb of promoter sequence.
Despite this, the Orclp motif occurred far more often in
potential regulatory, but not coding, sequence in the yeast
genome.

Sequence motifs showing a strong positional preference
were also enriched for CRFs

We then investigated whether proteins whose sequence
motifs showed a high positional preference for promoter
regions also shared common biological functions. To
explore this question, the set of 184 proteins was sorted
according to the promoter enrichment score from largest
to smallest (‘Materials and methods’ section). Then the
online David bioinformatics resource tool (http://david
.abce.nciferf.gov/home.jsp) (18) was used to assess GO
terms associated with the top 20% of ranked proteins.
Chromatin remodeling-related terms were highly repre-
sented among these highly ranked proteins (P <0.05),
including chromatin modification, establishment and/or
maintenance of chromatin architecture, DNA packaging,
gene silencing, negative regulation of gene expression
epigenetic, chromatin silencing and heterochromatin
formation.

To verify these results, we performed a similar analysis
using the GOrilla tool (http://cbl-gorilla.cs.technion.ac.il/)
(19). When given a ranked list of genes, GOrilla searches
for GO terms that show greater enrichment for items near
the top of the list relative to the rest of the list. Therefore,
it was unnecessary to limit this analysis to the top 20% of
ranked proteins. We submitted to GOrilla a set of proteins
ranked according to their promoter enrichment score and
examined GO term enrichment. Similar to the analysis
using David, many chromatin-associated GO terms were
identified for high-ranking proteins, including histone
modification, covalent chromatin modification, and
chromatin modification. This analysis indicates that
DBPs whose sequence motifs showed the strongest
positional constraint for promoters were also associated
with CRFs.

A negative correlation exists between high positional
preference and nucleosome occupancy

The relationship revealed above between the positional
preference of sequence motifs and CRFs led us to postu-
late that a correlation may also exist between the binding
of proteins exhibiting a high positional preference and
nucleosome occupancy. Based on nucleosome positions
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Figure 1. Promoter enrichment scores for all 667 PWMs. (A) The promoter enrichment score for all 667 PWMs sorted by decreasing promoter
enrichment. (B) Examples of specific PWMs taken from the top, middle and end of the set of PWMs sorted by promoter enrichment. From left to
right, the first graph is a random example from the top 50 PWMs (REBI). The second graph (RLM1) is a random example selected from PWMs
ranked 300-400. The third graph (ADRI) is a random example taken from PWMs ranked 600-667. Plotted in (B) is the z-score for each PWM
indicating over- or under-representation in the given class of sequence elements. A positive z-score denotes over-representation while a negative

z-score signifies under-representation.

obtained in a recent Chip-Seq study (20), we calculated a
score to represent nucleosome occupancy (see ‘Materials
and methods’ section) for each PWM.

A large negative score indicated that the overlap
between predicted binding sites and nucleosomes was
much less than would be expected by random chance.
Conversely, a large positive score suggested that the like-
lihood of an overlap was greater than random chance. The
Spearman rank correlation coefficient between the pro-
moter enrichment score and the score representing
nucleosome occupancy of predicted binding sites was
then calculated. Indeed, there was a negative correlation
between positional preference and nucleosome occupancy
(r¢ = —0.39, P<le—16) (Figure 2A). The P-values for
correlation coefficients were calculated according to Best
and Roberts (24). This result, combined with those from
the GO analysis, suggests that DBPs whose binding sites
show strong positional preference may act in part to
remove or shift nucleosomes upon binding to allow
entry by other transcriptional regulators (10), thereby
playing a role in determining specificity.

To further confirm these results, we repeated the corre-
lation analysis using a different measure of nucleosome
occupancy. Kaplan et al. (8) produced a high-resolution
map of nucleosome occupancy across the yeast genome.
For each position in the genome, a nucleosome occupancy

score was calculated. A negative number indicated that
nucleosome occupancy was below the genome average,
while a positive number represented an above average
likelihood for occupancy. We obtained the data set from
Kaplan et al. (8) and averaged the nucleosome occupancy
score for the set of predicted binding sites in promoter
regions for a given PWM. Then, the Spearman rank cor-
relation between the promoter enrichment score and the
average nucleosome occupancy was calculated. With this
method, we again observed a correlation between nucle-
osome occupancy and promoter preference (r, = —0.44,
P < 1e—16) (Figure 2B).

Kaplan et al. also produced a map of nucleosome occu-
pancy for chromatin that was reconstituted in vitro. Our
results suggest that the trend toward lower nucleosome
occupancy for motifs with a high positional preference
may be due to active chromatin remodeling by the tran-
scription factors that bind those motifs. As such, we would
expect to observe a positive correlation between positional
preference and those motifs that showed the largest differ-
ence between in vitro and in vivo nucleosome occupancy.
To test this hypothesis, we calculated the correlation
between the promoter enrichment score and the difference
in nucleosome occupancy in vitro and in vivo for the set of
predicted binding sites in promoter regions for each
PWM. As anticipated, promoter enrichment and the

TTOZ ‘PT 4800100 U0 Areiqi] HIN e Bio’sfeuinolpiojxo ieu woij papeojumoq


http://nar.oxfordjournals.org/

1776 Nucleic Acids Research, 2010, Vol. 38, No. 6

>

| rs=-0.44

200

re= -0.39

100
200

100

0
0

Promoter Enrichment Score
Promoter Enrichment Score

-100
-100

-10 -5 0 5 -3 -2 - 0 1 2 3
Z-Score Degree of Overlap with Nuclesomes Nucleosome Occupancy

Figure 2. Scatter plots showing the correlation between promoter enrichment and nucleosome occupancy for predicted sites in promoter regions. The
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the overlap of predicted transcription factor binding sites with well-positioned nucleosomes as the measure of nucleosome occupancy. (B) The
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difference between in vitro and in vivo nucleosome occu-
pancy was positively correlated (r; = 0.46, P < le—16, see
Supplementary Figure 1).

A correlation exists between high promoter enrichment
and strong location constraint within promoters

Previous studies have shown that motif context, including
distance from the TSS, likely plays a role in gene regula-
tion in yeast and humans (25,26). This prompted us to
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investigate whether sequence motifs showing strong
promoter enrichment also display a strong positional con-
straint within promoter regions. To answer this question,
we calculated the distance to the TSS for predicted binding
sites in yeast promoters. Sequence motifs that demon-
strated significant location constraint within promoter
regions clustered together at similar distances from the
TSS corresponding to a narrow distribution of distances
(Figure 3A). Sequence motifs that were not constrained
within the promoter exhibited distance distributions with
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Figure 4. Plot of positional preference within promoter regions. (A) The semi-interquartile range for the set of PWMs with at least 50 predicted
binding sites within promoter regions (N = 551) sorted by increasing semi-interquartile range. The semi-interquartile range measured the distribution
dispersion. The larger the value, the greater the distribution spread. A smaller semi-interquartile range indicates more location constraint within
promoter regions for the predicted binding sites. (B) A scatter plot depicting the correlation between promoter enrichment and positional preference
within promoter regions. The y-axis represents promoter enrichment in which larger values signify greater enrichment in promoter regions relative to
coding regions. The x-axis represents the degree of positional preference within promoter regions. The smaller the value the more clustered the
predicted binding sites are within promoter regions, and the higher the degree of positional preference within promoter regions.
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a larger spread (Figure 3B). We noticed with interest that
sequence motifs with a strong positional bias within pro-
moter regions seem to cluster ~100-300 bp upstream of
the TSS (Figure 3C).

The semi-interquartile range was calculated to measure
the distribution spread statistically. Because many of the
distance distributions were skewed (see Figure 3a), the
semi-interquartile range was a better measure of spread
than standard deviation. The Spearman rank correlation
coeflicient between the positional preference score and the
semi-interquartile range was calculated. Indeed, a cor-
relation between positional preference for promoter
regions (high promoter enrichment) and positional prefer-
ence within promoter regions (r¢ = —0.29, P = 2.4¢—12)
(Figure 4) was revealed.

DISCUSSION

Recent work elucidating nucleosome positioning in yeast
has revealed a common chromatin architecture around
TSS’s consisting of a nucleosome covering the TSS, an
immediate upstream nucleosome-free region (NFR) of
~140 bp, and a well-positioned nucleosome (‘—1’ nucle-
osome) on the upstream border of the NFR (7,27).
Veners et al. (28) demonstrated that the —1 nucleosome
is evicted upon recruitment of RNA polymerase II.
Additionally they showed that a number of chromatin
remodeling complexes were selectively associated with
the —1 nucleosome. Furthermore, a number of sequence-
specific experimentally determined binding sites over-
lapped the —1 nucleosome. These results support the
idea that the positioning of the —1 nucleosome may be
strongly regulated.

Here we show that sequence motifs with a strong
positional bias within promoter regions cluster almost
exclusively ~100-300bp  upstream of the TSS
(Figure 3C). This localization places them in a prime loca-
tion to regulate or be regulated by the —1 nucleosome,
further supporting the idea that positioning of the —1
nucleosome is important in transcriptional regulation.

If CRFs with sequence motifs that exhibit strong
positional preferences are modifying the chromatin struc-
ture in part to provide specificity to other DBPs, what is
the mechanism of action? One possibility is that CRFs
remove and/or shift nucleosomes to open up binding
sites for other transcriptional regulators. For example,
Raplp, Abflp and Reblp are all highly abundant
sequence-specific general regulatory factors that bind
motifs with a strong preference for promoter regions.
There is good evidence that all three play a role in
influencing chromatin structure (10,29,30). Additionally,
these proteins appear to act in part by creating bubbles
of open chromatin (8,31-33). In the case of Raplp and
Abflp, creating a region of open chromatin appears to
facilitate the binding of additional regulatory factors,
leading to transcription enhancement (31). In many
cases, Raplp and Abflp are unable to activate robust
transcription alone (34,35) and require additional regula-
tory factors. Further support is provided by the observa-
tion that Raplp- and Abflp-binding sites can be

substituted for one another without a loss in function
(31,35).

However, both Raplp and Abflp are involved in many
functions, including repression (36-38). Raplp initiates a
repressive chromatin structure by interacting directly with
the chromatin modifying factors Sir3p and Sirdp (37).
Therefore, in addition to making binding sites accessible,
it is likely that DBPs whose sequence motifs show a strong
positional preference can increase specificity by directly
interacting with chromatin modifiers or transcriptional
regulators.

A question that immediately presents itself is whether or
not the pronounced preference for promoter regions is
sufficient to determine specificity. Is the positional distri-
bution sufficient to fully explain binding in vivo? In a
genome-wide location analysis, Lieb ef al. (39) noted the
strongly skewed positional preference of Raplp-binding
motifs and concluded that the positional distribution of
potential Raplp-binding sites may account for much of
the specificity in Raplp binding. However, the skewed
positional distribution of these potential binding sites
was insufficient in fully explaining the pattern of Raplp
binding. For the case of Raplp, additional genome-wide
mechanisms also appear to be at work.
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Transposable elements (TEs) can donate regulatory sequences that help to control the expression
of human genes. The oncogene c-Myc is a promiscuous transcription factor that is thought to
regulate the expression of hundreds of genes. We evaluated the contribution of TEs to the c-Myc
regulatory network by searching for c-Myc binding sites derived from TEs and by analyzing the
expression and function of target genes with nearby TE-derived c-Myc binding sites. There are
thousands of TE sequences in the human genome that are bound by c-Myc. A conservative
analysis indicated that 816-4564 of these TEs contain canonical c-Myc binding site motifs. c-Myc
binding sites are over-represented among sequences derived from the ancient TE families L2 and
MIR, consistent with their preservation by purifying selection. Genes associated with TE-derived
c-Myc binding sites are co-expressed with each other and with c-Myc. A number of these putative
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TE-derived c-Myc target genes are differentially expressed between Burkitt’s lymphoma cells
versus normal B cells and encode proteins with cancer-related functions. Despite several lines of
evidence pointing to their regulation by c-Myc and relevance to cancer, the set of genes identified
as TE-derived c-Myc targets does not significantly overlap with two previously characterized
c-Myc target gene sets. These data point to a substantial contribution of TEs to the regulation of
human genes by c-Myc. Genes that are regulated by TE-derived c-Myc binding sites appear to

form a distinct c-Myc regulatory subnetwork.

Introduction

Almost half of the human genome sequence is made up of
interspersed repeat sequences, which are remnants of formerly
mobile transposable elements (TEs).”> These TE sequences
have shaped the structure, function and evolution of their host
genomes in a number of ways.>* For example, TEs are the
source of a variety of regulatory sequences, including
transcription factor binding sites (TFBS), alternative
transcription start sites and small RNAs, that help to control
the expression of host genes.® The gene regulatory properties
of TEs have received a great deal of attention in recent years,
particularly since eukaryotic genome sequences and functional
genomic datasets began accumulating over the last decade.
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The ability of TEs to donate sequences that regulate nearby
genes was first noticed in individual molecular genetic studies
where regulatory elements were found to be located inside of
repetitive sequence elements. In perhaps the first example of
this kind of study, the sex-limited protein (Slp) encoding gene
in mouse was shown to be regulated by androgen response
elements located in the long terminal repeat sequence of an
upstream endogenous retrovirus.® An accumulation of such
anecdotal cases was taken to support the possibility that TEs
may have broad genome-scale effects on gene regulation.”
In the genomics era, three distinct classes of approaches have
been taken to elucidate the regulatory contributions of TEs on
the genome scale: (i) computational prediction of TE-derived
regulatory sequences, (ii) identification of highly conserved TE
sequences with comparative genomics and (iii) co-location of
experimentally characterized regulatory sequences and TEs.

Computational analyses of TE sequences using position
weight matrices that represent cis-regulatory sequence motifs
have shown that TEs harbour numerous putative TFBS.>!°
These data, taken together with the genomic abundance of
TEs, underscore their potential ability to regulate the expression
of numerous host genes. A problem with this approach is that
the ab initio prediction of cis-regulatory sequence motifs is
prone to numerous false positives. To overcome this limitation,
authors have used sequence shuffling, or simulation, to build
null background sequence sets and then find TFBS that are
over-represented among TE sequences relative to the background
sets.!® Even with such a control for sequence composition in
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place, it is still difficult to know which of these TE-derived
TFBS may actually be functionally relevant in terms of
regulating the expression of host genes. It can also be difficult
to distinguish between sequences that regulate the expression
of the element itself versus those that regulate nearby
host genes.

Comparative genomics studies have been used to help
identify TE sequences that are likely to encode functions for
their host genomes. The rationale behind this approach is that
conserved TE sequences have been preserved by purifying
selection because of their functional, presumably regulatory,
importance to the host organism.'! The comparative genomics
approach to the identification of TE-derived regulatory
sequences was pioneered by Silva er al. who identified
numerous ancient L2 and MIR intergenic TE sequences that
were highly conserved among mammals and therefore likely
to be functionally important.'? Since that time, a number of
studies have turned up thousands of conserved non-coding
sequences that are derived from TEs."*'7 These findings
indicate that a substantial fraction of TE sequences in
mammalian genomes have been conserved by virtue of their
functional (regulatory) relevance.'® However, this evolutionary
approach to the identification of TE-derived regulatory
sequences is overly conservative in some cases because it will
not detect regulatory sequences that are derived from
relatively recently inserted, or lineage-specific, TEs. Indeed,
TEs are the most dynamic and rapidly evolving sequences in
eukaryotic genomes, and most TE insertions are not shared
between evolutionary lineages.'® Accordingly, it has been shown
that numerous experimentally characterized TE-derived
regulatory sequences are not conserved between species.'® 2!

One of the most promising genome-scale approaches for the
characterization of TE-derived regulatory sequences involves
co-locating experimentally characterized regulatory elements
and TE annotations on genomic sequences. This approach was
first used on a relatively small scale by mapping the locations
of hundreds of TFBS characterized in individual experiments
to human TEs and then extrapolating to the entire human
genome.”” This study suggested that thousands of human
genes may be regulated by TE-derived regulatory sequences,
but it was not possible to know whether this was actually the
case. In order for the co-localization approach to really work
on the genome-scale, high-throughput experimental data on
the locations of regulatory sequences are needed. These data
have become widely available in the last few years thanks to
the invention of techniques like chromatin immunoprecipitation
followed by microarray, ChIP-chip, or high-throughput
sequencing, ChIP-Seq, analysis.”> There are now hundreds-
of-thousands of experimentally characterized TFBS that have
been mapped to the human genome using these techniques,
and recent studies have shown that many of these sites are
derived from TEs.*** Many of these TE-derived TFBS are
lineage-specific and may define recently evolved regulatory
subnetworks that elaborate on previously existing networks
as is the case for p53 binding sites derived from human
endogenous retroviruses.>

One particularly interesting transcription factor for which
there is a human genome-wide map of binding sites is c-Myc.?®
c-Myc has been reported to regulate a large set of genes,?” %’

and it is considered an oncogene by virtue of its deregulation
in a variety of cancers. For instance, c-Myc is markedly
deregulated in lymphomas where it is over-expressed relative
to normal B cells. A recent report evaluated the contribution
of TEs to ¢c-Myc binding sites on the human genome.?* These
authors found that c-Myc bound regions were not statistically
enriched for co-localization with any particular TE family, and
based on this observation concluded that c-Myc TFBS do not
reside on repeats. However, our own preliminary data revealed
that numerous c-Myc bound regions were in fact derived from
human TE sequences, and we wanted to further explore the
relationship between c-Myc binding and TEs to address this
discrepancy.

Despite the lack of enrichment for c-Myc binding sites in a
particular TE class or family observed previously, we found
thousands of TE-derived c-Myc binding sites in the human
genome using a conservative approach that integrated data
from the experimental characterization of c¢-Myc bound
regions with c-Myc binding site motif prediction. Gene
expression and gene set enrichment analyses indicate that
many of these TE-derived c-Myc binding sites are likely to
be functionally relevant with respect to the regulation of
human gene expression. However, most genes associated with
TE-derived c-Myc binding sites do not correspond to genes
previously characterized as targets of c-Myc regulation. This
raises the possibility that TE-derived c-Myc targets define a
distinct c-Myc regulatory subnetwork.

Results and discussion
TE-derived c-Myc binding sites

We integrated experimental data on c-Myc bound genomic
sequences, probabilistic transcription factor binding site
(TFBS) analysis and TE genome-annotations to identify
TE-derived c-Myc binding sites in the human genome. The
locations of c-Myc bound human genome sequences were
previously determined using genome-wide chromatin
immunoprecipitation (ChIP) and paired-end-ditag (PET)
sequencing on P493 B cells.>® We co-located these c-Myc bound
human genome sequences with TE sequences annotated by
RepeatMasker (http://www.repeatmasker.org). This analysis
resulted in a set of 259294 TE sequences co-located with
c-Myc bound regions. The precise locations of TE-derived
c-Myc binding sites were then determined by running the
program Clover®® on the c-Myc bound TE sequences. Clover
was run using two c-Myc position—frequency matrices
(Fig. S1, ESI{) with P-value thresholds of 0.01 and 0.001.
This analysis resulted in a total of 4564 TE-derived c-Myc
binding sites for P < 0.01 and 816 TE-derived c-Myc sites for
P < 0.001. Thus, there is a substantial potential for human TE
sequences to contribute to c-Myc gene regulatory networks.
Here it should be noted that the use of Clover for the
identification of specific c-Myc binding sites represents a
conservative approach that eliminates many c-Myc bound
human TE sequences that do not contain canonical c-Myc
binding site sequence motifs. In fact, running Clover resulted in a
two orders-of-magnitude reduction in the number of
TE-derived c-Myc bound regions identified in the human genome.
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Table 1 Number of TEs that contain c-Myc binding sites for each TE class/family

TE class/family Observed number”

Observed percent (%) Expected percent? (%)

L1 940
L2 546
LINE other 47
Alu 994
MIR 733
SINE other 27
DNA 411
LTR 866
Total 4564

20.60 21.9
11.96 9.7
1.03 1.6
21.78 28.1
16.06 13.9
0.59 0.1
9.01 9.3
18.97 15.5
100.00 100.0

“ Name of TE classes or families. * Observed number of TEs in each class/family. ¢ Observed percent: the observed number of TEs in each class/
family divided by the total observed number (4564) of TEs containing c-Myc binding sites. ¢ Expected percent: the total number of TEs in each
class/family in human genome divided by the total number of all TEs in human genome.

While this approach may result in the loss of some bona fide
TE-derived c-Myc binding sites, it also yields increased
confidence in the functional relevance of the smaller set of
TE-derived sites we identified.

In order to evaluate the contribution of distinct TEs to
c-Myc binding sites, we divided human TEs into 8 classes/
families based on the Repbase database®! classification system:
L1, L2, LINE other, Alu, MIR, SINE other, DNA and LTR.
The observed numbers of individual TE insertions with c-Myc
binding sites for each class/family are shown in Table 1
(P < 0.01) and Table S1, ESIi (P < 0.001), and a comparison
of the observed versus expected percentages for each TE
class/family are shown in Fig. 1A (P < 0.01) and Fig. S2,
ESIf (P < 0.001). Members of the abundant L1 and Alu
element families have lower observed than expected percentages,
while L2 and MIR elements have higher than expected
percentages. The relative ages of these families can be estimated
by calculating the sequence divergence between individual
elements and subfamily consensus sequences; younger elements
have lower divergence since they inserted in the genome more
recently. L1s and Alus are younger element families, many of
which are primates-specific, whereas L2 and MIR are more
ancient families that radiated early in mammalian evolution
(Fig. 1B). In other words, relatively older TE families contribute

more c-Myc binding sites than expected based on their
percentage in the genome, whereas younger families contribute
fewer c-Myc binding sites than expected. A similar pattern
was found in a recent study that analyzed experimentally
characterized human TE-derived binding sites from numerous
distinct transcription factors.>’ The enrichment of c-Myc
TFBS in more ancient TEs is consistent with the notion that
these sequences have been conserved in the genome by purifying
selection based on their functional relevance.'? Nevertheless,
Alu elements show the highest number of c-Myc binding sites,
since they are the most numerous elements in the genome.
TFBS derived from relatively young, even polymorphic in
some cases, elements like Alu are of interest since they may
impart lineage- or condition-specific regulatory properties on
nearby genes.'® 2125 We explore this possibility later in the
manuscript.

Regulatory effects of TE-derived c-Myc binding sites

In order to evaluate the potential regulatory effects of
TE-derived c-Myc binding sites, we mapped the TE-derived
sites to the vicinity of human genes and analyzed these genes’
tissue-specific expression patterns. Human genes with
TE-derived c-Myc binding sites within +-10 kb were considered
as potential c-Myc regulated target genes. This resulted in a

Fig. 1 Family origins and relative ages for human TEs bound by c-Myc. Observed versus expected percentages of c-Myc binding sites derived
from different TE classes/families. (A) The observed percentages (blue) of TEs containing c-Myc binding sites in each TE class/family are plotted
along with the expected percentages (maroon) of TEs in each class/family based on their background percentages in the human genome.
(B) Percent divergence from subfamily consensus sequences for human TEs that are bound by c-Myc. The relative percentages of each of the six
TE families are shown for each percent divergence bin. Younger elements have lower divergence from their consensus sequences, and older
elements have higher divergence.
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Table 2 Pearson correlation coefficients (PCC) of gene expression within each target gene class

Target gene class’ Number of probes” Average PCC* Z score? P-value®

L1 357 0.027 31.17 3.85 x 107213
L2 297 0.031 29.63 7.96 x 107193
LINE other 20 0.033 2.29 0.022

Alu 550 0.044 73.06 0

MIR 390 0.021 26.10 4.64 x 1071%°
SINE other 17 0.055 2.32 0.021

DNA 205 0.028 17.57 404 x 1079
LTR 257 0.021 16.63 4.13 x 1072

“ Name of TE classes or families. * Number of Affymetrix probes corresponding to genes with c-Myc binding sites derived from TE of specific
classes/families. © Average of Pearson correlation coefficients (PCC) of each pair of probes within specific TE classes/families. ¢ Z-transformation

of PCC values. ¢ P-values indicate the significance levels of Z scores.

total set of 1550 human genes with proximal TE-derived
c-Myc binding sites. The expression patterns of these putative
target genes over 79 human tissues and cell lines were
compared to each other, and to the expression patterns of
c-Myc, using the Novartis human gene expression atlas of
Affymetrix microarray data.*?

For each class/family of TEs, the expression patterns of all
putative c-Myc target genes were compared using the Pearson
correlation coefficient (PCC). Table 2 shows the number of
target gene Affymetrix probes for each TE class/family along
with the average PCCs, Z scores and P-values. All 8 TE
classes/families have sets of putative c-Myc target genes that
are positively and significantly co-expressed, on average,
across human tissues. Target genes with Alu-derived c-Myc
binding sites, the most numerous class, show the highest levels
of average co-expression and the greatest statistical significance.
It should be noted that while the average co-expression levels
for the distinct TE class/family target gene sets are all positive
and, for the most part, highly statistically significant, the
average PCC values are still quite low (i.e. close to 0).
This suggests that while there is certainly an enrichment for
co-expressed gene pairs among the TE-derived c-Myc target
genes, the total set of target genes for each class has a broad
range of tissue-specific expression patterns. This is consistent
with the fact that genes with proximal TE-derived c-Myc
binding sites are also likely to be regulated by additional
transcription factors as well as different classes of regulators
such as epigenetic modifications and/or small RNAs.

In order to further explore the relationship between human
gene expression and the presence of TE-derived c-Myc binding
sites, tissue-specific expression levels of putative target genes
were compared to the expression of the regulator c-Myc. This
allowed us to more directly investigate whether those target
genes are actually regulated by c-Myc. To do this, we
calculated the target genes’ average expression levels in each
tissue and compared them with the c-Myc expression data by
calculating pairwise PCCs across tissues between the TE
classes/families and c-Myc. The results of the PCC analysis
are shown in Table 3, and the average expression levels for TE
classes/families and c-Myc across 79 tissues are shown in
Fig. 2. 7 out of 8 TE class/family target gene sets show
statistically significant co-expression with c-Myc. Furthermore,
for these 7 TE classes/families, the average PCC values
between the putative target genes with TE-derived binding
sites and c-Myc are an order of magnitude greater (Table 3)

Table 3 Pearson correlation coefficients (PCC) between expression
levels of TE-derived target genes and c-Myc

Target gene class? PCC’ t P-value?

L1 0.37 3.45 9.18 x 107
L2 0.35 3.28 1.57 x 1079
LINE other —0.10 —0.87 0.39

Alu 0.48 4.79 7.95 x 107%
MIR 0.41 3.93 1.86 x 107%
SINE other 0.62 7.00 8.17 x 10710
DNA 0.34 3.14 241 x 1079
LTR 0.32 2.94 436 x 1079

“Name of TE classes or families. * Pearson correlation coefficients
(PCC) between the average tissue-specific expression levels of all target
genes with a TE class/family and c-Myc. © PCC transformed into
t-values by 1 = PCC x sqrt(df/(1—PCC?)) where df = 77. ¢ P-values
indicate the significance levels of ¢ scores (following Student’s
t distribution).

than the average PCC values among all pairs of target genes
(Table 2). This indicates that the target genes’ tissue-specific
expression patterns are distributed around the expression
pattern of c-Myc in such a way as to be more similar to
c-Myc, on average, than they are to each other. This can be
visually appreciated by comparing the average tissue-specific
expression levels of the TE class/family target genes to the
expression pattern of c-Myc (Fig. 2). Target genes with
TE-derived c-Myc binding sites are clearly more highly
expressed, on average, in the same tissues where c-Myc is also
highly expressed. The most striking cases of c-Myc-to-target
gene co-expression can be seen for both normal and cancerous
T cells and B cells, including CD4 " and CD8 " T cells, CD19 "
B cells and several lymphoma and leukemia cell lines (Fig. 2).

We performed a permutation test to more precisely identify
the specific tissues where both c-Myc and the target genes with
TE-derived c-Myc binding sites are over-expressed. To do this,
the average tissue-specific expression levels of all target genes
were computed and compared to 1000 randomly permuted
(over the same gene set) tissue-specific average expression level
vectors. The same analysis was done using c-Myc tissue-
specific expression levels as the test set. For each tissue, the
observed test set average, or c-Myc, expression level was then
compared to the distribution of permuted values. There are
22 significantly (P < 0.05) over-expressed tissues among the
TE c-Myc binding site target genes including the aforementioned
normal and cancerous T and B cells as well as several brain
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Fig. 2 Average expression levels of TE-derived c-Myc target genes, and c-Myc expression levels, across 79 tissues/cell lines. Average tissue-specific
expression levels are shown for TE-derived c-Myc target genes from 8 TE classes/families, and tissue-specific gene expression levels are shown for
c-Myc. High expression levels are shown in red and low expression levels are shown in blue.

tissues (Table S2 and Fig. S3, ESIT). When the c-Myc expression
levels were similarly compared to the permuted expression
levels, 6 tissues were identified as significantly over-expressed,
all of which were over-expressed in the TE-derived c-Myc
target gene set. Taken together, the data comparing the
expression patterns of the target genes and c-Myc provide an
additional, and more compelling, line of expression evidence in
support of the functional relevance of TE-derived c-Myc
binding sites.

A TE-specific c-Myc regulatory network

To further explore the functional relevance of the human genes
with TE-derived c-Myc binding sites, we compared the set of
putative TE-derived c-Myc target genes to two previously
published sets of genes identified to be regulated by c-Myec.
Basso et al. characterized a set of 2063 c-Myc target genes
by reverse engineering a c-Myc regulatory network from
high-throughput gene expression data.?’ Zeller er al. used
literature mining to create the Myc target gene database
(http://www.myccancergene.org) reporting 1697 experimentally
characterized c-Myc target genes.”’ We computed the overlap
of these two c-Myc target gene sets with each other and the
overlap of each with our own TE-derived target gene set; the
statistical significance levels of the c-Myc target gene set
overlaps were assessed using the hypergeometric distribution
(Fig. 3). The two previously available c-Myc target gene
sets have a substantial, and highly statistically significant
(P < 1.8 x 107'1?), overlap of 434 genes. This indicates that
the distinct expression and literature-based c-Myc target gene
search protocols converge on a shared core of c-Myc regulated
target genes. On the other hand, the 1550 TE-derived c-Myc
target genes we identified have a low, and non-significant
(0.81 < P < 0.99), overlap with the previously characterized
sets of genes. This result can be interpreted in two ways. It
could mean that the TE-derived c-Myc target genes we
identified do not represent a functionally relevant set of genes
that are in fact regulated by c-Myec. This interpretation is not
consistent with the expression data we report here indicating
that genes with TE-derived c¢-Myc binding sites are
co-expressed with each other and with c-Myc. The low overlap
between our TE-derived target gene set and the previously
published sets could also be taken to indicate that TE
sequences yield a distinct and specific c-Myc regulatory

Fig. 3 Overlap between TE-derived c-Myc target genes identified
here and two previously characterized c-Myc target gene sets. Circle A
represents the c-Myc target gene dataset from Basso er al.,”’ circle B
represents the c-Myc target gene dataset from Zeller er al.,”? and circle
C represents the putative TE-derived c-Myc target genes identified
here. The numbers above the diagonal of the matrix are the number of
genes that overlap between two different datasets, and the numbers
below the diagonal of the matrix are the significance levels (P-values)
of the overlap calculated by the hypergeometric test.

network. This interpretation is consistent with previously
published results indicating that TEs can provide lineage-
specific regulatory sequences.'® 2%

In order to try and discriminate between these two possible
scenarios, (i) functional irrelevance of the TE-derived c-Myc
binding sites versus (i) a TE-specific c-Myc regulatory network,
we evaluated the overlap of the TE-derived c-Myc target gene
set with a series of gene set collections from the molecular
signatures database (MSigDB) (http://www.broad.mit.edu/
gsea/msigdb/index.jsp). The MSigDB gene sets represent
groups of genes with similar features or properties such
as co-regulated genes, genes with similar cis-regulatory motifs
and genes with similar gene ontology (GO) functional
annotations.*® Thus, gene set enrichment analysis with the
MSigDB can be used to evaluate whether the TE-derived
c-Myc target genes have similar biological functions or
regulation. The TE-derived c-Myc target genes were broken
down into class/family-specific sets and run against MSigDB.
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This analysis resulted in numerous statistically significant gene
set enrichments (Table S3, ESIt), the most relevant of which
include a number of cancer related gene modules. These data
suggest that many of the TE-derived c-Myc target genes are
functionally related and associated with cancer. For instance,
c-Myc target genes with L2-derived binding sites are enriched
for a cluster of genes with expression patterns indicative of
lymphoma and immune response, based on their tissue-specific
expression levels. Both MIR and LTR elements donate c-Myc
binding sites to genes classified as being involved in B cell
lymphoma via so-called clinical annotations, which associate
microarrays with known clinical attributes. In other words,
TE-derived c-Myc target genes that are from different families,
and are identified with different methodologies, converge on
genes that function in B cells and in cancer. In addition, DNA
element-derived c-Myc target genes are enriched for genes
involved in the MAPK signalling pathway, which regulates
cellular response to growth factors and mediates the action of
many oncogenes.

Differential expression in Burkitt’s lymphoma versus
normal B cell

c-Myc is a well known oncogene that is over-expressed in a
number of different cancers, particularly lymphomas.®®
In light of its role in cancer, we asked whether TE-derived
c-Myc target genes showed differential expression between
cancer and normal cells. To do this, we used a microarray
gene expression dataset, from the Oncomine database,
comparing Burkitt’s lymphoma (n = 31) versus normal B cell

(n = 25).*” We identified 53 TE-derived c-Myc target genes
that show statistically significant (P < 0.05) differential
expression between normal and cancer (Fig. 4); 16 of the
c-Myc binding sites that map to these genes are derived from
Alu elements. c-Myc is also known to be over-expressed in
Burkitt’s lymphoma cells, and we calculated the PCC across
the 56 cancer and normal cell lines for these 53 genes’ expression
data with c-Myc’s to see if the differentially expressed target
genes are co-regulated with c-Myc (Table S4, ESIZ). There are
32 TE-derived c-Myc target genes that show positive correlations
(0.23 < PCC < 0.80) with c-Myc and 21 target genes with
negative correlations (—0.66 < PCC < —0.38); all PCC are
statistically significant (P < 0.05). These data indicate
that TE-derived c-Myc binding sites contribute to the
cancer-related expression of c-Myc regulated genes. TE-derived
c-Myc target genes are both up-regulated and down-regulated
in cancer, while c-Myc is over-expressed in lymphoma relative
to normal B cells. This finding may be attributed to the fact
that c-Myc can both positively and negatively regulate the
expression of its target genes.”® The fact that the majority of
correlations are positive is consistent with our results showing
the overall average positive correlation between TE-derived
c-Myc target genes and c-Myc (Table 3 and Fig. 2).

In order to further evaluate the function of these differentially
expressed genes, gene set enrichment analysis was performed
on the set of 53 TE-derived c-Myc target genes that are
deregulated in Burkitt’s lymphoma. To do this, the genes were
sorted according to the TE class/family of their c-Myc binding
sites and each set was evaluated against the MSigDB gene sets.
A number of statistically significant enrichments for

Fig. 4 Differential expression of TE-derived c-Myc target genes in Burkitt’s lymphoma versus normal B cells. Each row shows the expression
levels of a gene in Burkitt’s lymphoma cells (n = 31 on the left) and normal cells (z = 25 on the right); over-expression is shown in red and

under-expression in green.
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cancer-related gene sets were detected, particularly for MIR
and L1 elements (Table S5, ESIf). For instance, the genes
encoding ITPR1 and AKT2 bear MIR-derived c-Myc binding
sites and show up in several enriched gene sets including
members of the B cell antigen receptor signalling pathway
genes and the gene set related to the PIP3 signalling pathway
in B lymphocytes. For instance, AKT genes encode
serine—threonine protein kinases that promote cell prolifera-
tion by phosphorylating targets that lead to the activation of
the anti-apoptotic transcription factor NF-kB. ITPR1 encodes
an intracellular channel that mediates release of calcium from
the endoplasmic reticulum, which can also lead to cell proliferation
via stimulation of theCALMLG6 protein upstream in the
calcium signalling pathway. In addition, the genes LRPPC
and PRKCBI both have L1-derived c-Myc binding sites and
are known to be deregulated in B cell lymphoma.

Alu elements are the single most abundant class/family of
TEs that provide c-Myc binding sites to human genes, and
Alu-derived c-Myc binding sites are also over-represented
among the set of target genes differentially expressed between
Burkitt’s lymphoma and cancer. As alluded to previously, we
were particularly interested in Alu elements since they have
inserted relatively recently in the human genome, are poten-
tially polymorphic, and have a known role in several cancers.>*
We investigated the Alu-derived c-Myc target genes shown to
be differentially regulated between Burkitt’s lymphoma versus
normal B cells and found a small set of Alu c-Myc target genes
that were tightly coherent with respect to several different
characteristics (Fig. 5). These genes all have Alu-derived
c-Myc binding sites that are located around the 5’ transcription
start site, three of which are located within the proximal +2 kb
promoter region (Fig. SA). All of these genes are up-regulated
in Burkitt’s lymphoma and positively correlated with c-Myc
expression (Table 4 and Fig. 5B). The specific c-Myc binding

sites in these Alu sequences are all derived from one particular
location in the element suggesting that the c-Myc TFBS
evolved in an ancestral sequence and was distributed by
transposition, as opposed to evolving in situ after the elements
inserted (Fig. 5C and Fig. S4, ESIf). Two of the five genes
have c-Myc binding sites derived from AluSg subfamily
sequences and the other three have c-Myc binding sites derived
from the AluSx subfamily. AluSg and AluSx are particularly
young Alu subfamilies that are polymorphic (i.e. show
insertion site differences) among human populations.®® Tt is
possible that polymorphic Alu elements change the regulatory
network of c-Myc between individual humans and/or between
cell types. Furthermore, if a gene is brought under the control
of c-Myc by an Alu insertion it could lead to changes in
expression of that gene associated with oncogenesis. These
recently evolved Alu-derived c-Myc binding sites exemplify TE
contributions to a specific c-Myc subnetwork, consistent with
our characterization of numerous novel c-Myc target genes
that are associated with TE-derived binding sites.

Materials and methods
Identification of TE-derived c-Myc binding sites

The locations of experimentally characterized c-Myc bound
regions, characterized previously by genome-wide chromatin
immunoprecipitation (ChIP) and paired-end-tag (PET) sequencing
on P493 B cells,?® were taken from the GIS ChIP-PET track
in UCSC genome browser (http://www.genome.ucsc.eduy/).*®
The positions of TEs were taken from the RepeatMasker
track in UCSC genome browser. TE and c-Myc bound
regions were co-localized using the UCSC table browser
tool.>” TE-derived c-Myc bound regions were analyzed with
the program Clover,*® using two c-Myc binding site motif

Fig. 5 Target genes with Alu-derived c-Myc binding sites. (A) Approximate illustration of relative positions of Alu-derived c-Myc binding sites
compared with target genes’ transcriptional start sites (TSS). (B) Differential expression of Alu-derived c-Myc target genes, and c-Myc, in Burkitt’s
lymphoma versus normal B cells. (C) Multiple sequence alignment of the Alu element insertions with c-Myc binding site locations indicated.
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Table 4 Differential expression of Alu-derived c-Myc target genes

Gene symbol Differential expression (z-value)”

Differential expression (P-value)”

Correlation with c-Myc® P-value of correlation?

SLC29A1 11.98 1.4 x 10716
LSM1 6.54 23x 1078
OIPS 5.78 1.9 x 107°
AKAP1 11.21 1 x 107

DKCl 5.45 1.3 x 107°

0.77 1.92 x 10712
0.50 470 x 1073
0.48 9.39 x 1073
0.79 142 x 10713
0.64 527 x 1078

@ Gene’s differential expression in Burkitt’s lymphoma cells versus normal B cells. T-values computed by the Student’s r-test. © Significance levels
(P-values) of the differential expression. ¢ Pearson correlation coefficients between cancer versus normal expression of Alu-derived c-Myc target

genes and c-Myc. ¢ Significance levels (P-values) of the correlation.

position—frequency matrices from the TRANSFAC database®®
(VSMYC_01 and VSMYC _02 see Fig. S1, ESI}) to precisely
locate c-Myc binding sites. Clover uses non-parametric approach
with 1000 randomizations of the search sequence to generate
a score and associated P-value. Clover was run using a
conservative score threshold of 6 with two P-value thresholds
P < 0.0l and P < 0.001.

Human TE sequences were divided into 8 classes/families
using the Repbase classification system®' implemented with
RepeatMasker: L1, L2, LINE-other (LINE elements excluding
L1 and L2), Alu, MIR, SINE-other (SINE elements excluding
Alu and MIR), DNA and LTR. Alu elements were further
divided into subfamilies and members of individual subfamilies
bound by c-Myc were aligned using ClustalW>° to identify the
relative locations of c-Myc binding sites.

Analysis of TE-derived c-Myc target genes

Human Refseq®” genes were identified as putative TE-derived
c-Myc regulatory targets if they had TE-derived c-Myc
binding sites within 10 kb of the gene boundaries. Microarray
gene expression data were taken from the Novartis mammalian
gene expression atlas version 2 (GNF2),*? and Affymetrix
probes from GNF2 were mapped to TE-derived c-Myc target
genes using the UCSC genome browser annotations.
Co-expression among TE-derived c-Myc target genes, and
between target genes and c-Myc, was evaluated by calculating
Pearson correlation coefficients (PCC) between pairs of genes
across 79 different tissues or cell lines. Statistical significance
levels (P-values) of PCC values, and averages, were computed
using the Z transformation. A permutation test was used to
identify sets of tissues that are over-expressed for c-Myc and
among all TE-derived c-Myc target genes. To do this, tissue-
specific gene expression vectors were randomly shuffled for
each gene and average tissue-specific expression values were
calculated for all randomly shuffled genes. 1000 sets of average
tissue-specific expression values were used to compute null
background expression level distributions for each tissue
against which the observed values were compared. All P-values
were corrected for multiple tests using the Benjamini-Hochberg
false discovery rate.

Differential expression of target genes in cancer versus normal
cells

TE-derived c-Myc target genes were mapped to the Burkitt’s
lymphoma and normal B cell microarray dataset compiled by
Basso et al.>” The Oncomine database*! was used to select genes
from this dataset that were determined to be differentially

expressed between cancer (Burkitt’s lymphoma n = 31) versus
normal B cells (» = 25) using the Student’s ¢-test. Co-expression
values between these differentially expressed TE-derived
c-Myc target genes and c-Myc, across the 56 cancer and
normal B cell lines, were computed using the PCC as described
previously.

Gene set enrichment and c-Myc target gene analyses

Sets of TE-derived c-Myc target genes for each TE class/family
were searched against a series of gene set collections from the
molecular signatures database (MSigDB)** to evaluate their
shared functional and/or regulatory features. The extent and
significance of the overlaps between the set of TE-derived
c-Myc target genes identified here and two previously
characterized c-Myc target gene sets were evaluated using
the hypergeometric distribution:

where £ = number of overlapping target genes, N = number
of TE-derived c-Myc target genes, n = number of previously
characterized c-Myc target genes, and m = human genes not
previously characterized as c-Myc targets.

Conclusions

Recently, Bourque et al. analyzed the ability of human TEs to
provide transcription factor binding sites genome-wide.**
They considered high-throughput binding site data for seven
transcription factors, including c-Myc analyzed here, and
concluded that five of these transcription factors bind to
distinct families of human TEs. However, c-Myc was not
one of the families identified in their study to bind to human
TEs. This can be attributed to the enrichment criteria used to
characterize transcription factors as binding human TEs.
Specifically, they only considered transcription factors that
bind to families of TEs with higher than expected frequency
based on the abundance of the TE in the genome. This
approach makes sense from a quantitative perspective, but it
may be overly conservative if it misses bona fide functional
transcription factor binding sites derived from TEs. We found
that hundreds-of-thousands of human TEs have experimental
evidence of being bound by c-Myc. Furthermore, many of
these TE sequences harbor canonical c-Myc binding site
sequence motifs, suggesting that the binding of c-Myc to the
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elements is not spurious. In addition, our own functional
analysis of human genes with proximal TE-derived c-Myc
binding sites suggests that many of these sites may indeed be
functional with respect to mediating gene regulation by c-Myc.
However, definitive proof of such function will have to await
experimental characterization. Hopefully, the list of gene
targets and TE-derived c-Myc binding sites uncovered by
our analysis can be used to stimulate investigation of the
regulatory properties of human TEs.

TE sequences in the human genome provide thousands of
c-Myc binding sites, and genes that bear nearby TE-derived
sites show evidence for regulation by c-Myc. TE-mediated
regulation of human genes by c-Myc includes changes in
expression that are characteristic of the difference between
cancer versus normal B cells, and TE-derived target genes
encode proteins with cancer-related functions. Nevertheless,
the TE-derived c-Myc target genes identified in this study do
not overlap, for the most part, with previously characterized
c-Myc target genes. This suggests that expansion of TE
sequences may provide a mechanism for the emergence of
distinct lineage-specific regulatory subnetworks.?
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We evaluated the epigenetic contributions of repetitive DNA elements to human gene regulation. Human
proximal promoter sequences show distinct distributions of transposable elements (TEs) and simple sequence
repeats (SSRs). TEs are enriched distal from transcriptional start sites (TSSs) and their frequency decreases closer
to TSSs, being largely absent from the core promoter region. SSRs, on the other hand, are found at low frequency
distal to the TSS and then increase in frequency starting ~ 150 bp upstream of the TSS. The peak of SSR density is
centered around the — 35 bp position where the basal transcriptional machinery assembles. These trends in
repetitive sequence distribution are strongly correlated, positively for TEs and negatively for SSRs, with relative
nucleosome binding affinities along the promoters. Nucleosomes bind with highest probability distal from the
TSS and the nucleosome binding affinity steadily decreases reaching its nadir just upstream of the TSS at the same
point where SSR frequency is at its highest. Promoters that are enriched for TEs are more highly and broadly
expressed, on average, than promoters that are devoid of TEs. In addition, promoters that have similar repetitive
DNA profiles regulate genes that have more similar expression patterns and encode proteins with more similar
functions than promoters that differ with respect to their repetitive DNA. Furthermore, distinct repetitive DNA
promoter profiles are correlated with tissue-specific patterns of expression. These observations indicate that
repetitive DNA elements mediate chromatin accessibility in proximal promoter regions and the repeat content of
promoters is relevant to both gene expression and function.
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1. Introduction

The prevalence of repetitive DNA sequences in mammalian genomes
has been appreciated since the classic re-association kinetic (COT-curve)
experiments of the late nineteen-sixties (Britten and Kohne, 1968). The
completion of the human genome projects at the turn of the millennium
further underscored the extent to which the human genome sequence is
made up of repetitive DNA elements (Lander et al., 2001; Venter et al.,
2001). There are several distinct categories of repetitive sequence ele-
ments in the human genome. Interspersed repeat sequences, also
known as transposable elements (TEs), make up at least 45% of the
euchromatic genome sequence, and novel human TE families continue
to be discovered and characterized (Wang et al., 2005; Nishihara et al.,
2006). Simple sequence repeats (SSRs) consist of tandem repeats of
exact or nearly exact units of length k (k-mers), with k=1-13 corres-
ponding to microsatellites and k= 1-500 for minisatellites. Analysis of
the human genome sequence showed that ~3% of the euchromatic
sequence was made up of SSRs, and both SSRs and TEs are thought to be

Abbreviations: TE, transposable element; SSR, simple sequence repeat; TSS,
transcriptional start site; GNF2, Novartis mammalian gene expresssion atlas 2.
* Corresponding author. Tel.: +1 404 385 2224; fax: +1 404 894 0519.
E-mail address: king.jordan@biology.gatech.edu (LK. Jordan).

0378-1119/$ - see front matter © 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.gene.2009.01.013

far more abundant in heterochromatin. Segmental duplications of 1-
200 kb were initially shown to account for ~3% of the human genome
sequence (Lander et al., 2001), and more recent results reveal that copy
number variants populate the genome to an even greater extent (Kidd et
al,, 2008).

The evolutionary significance and the functional role that repetitive
genomic elements, TEs in particular, play has long been a matter of
speculation and inquiry. Once regarded as selfish, or parasitic, genomic
elements with little or no phenotypic relevance (Doolittle and Sapienza,
1980; Orgel and Crick, 1980), it has since become apparent that TEs make
substantial contributions to the structure, function and evolution of
their host genomes (Kidwell and Lisch, 2001). Perhaps the most
significant functional effect that TEs have had on their host genomes is
manifest through the donation of regulatory sequences that control the
expression of nearby genes (Feschotte, 2008). Studies of TE regulatory
effects have focused, for the most part, on discrete well characterized
regulatory elements such as transcription factor binding sites (Jordan
et al., 2003; van de Lagemaat et al., 2003; Wang et al., 2007), enhancers
(Bejerano et al,, 2006) and alternative promoters (Dunn et al., 2003;
Conley et al., 2008). A number of recent studies have also outlined the
contributions of TEs to regulatory RNA genes (Smalheiser and Torvik,
2005; Borchert et al., 2006; Piriyapongsa and Jordan, 2007; Piriyapongsa
et al., 2007). For this study, we sought to analyze the contribution of
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repetitive DNA to epigenetic aspects of gene regulation, specifically the
relationship between repetitive DNA elements and the chromatin
environment of human promoter sequences.

Genomic DNA in eukaryotes is wrapped around histone proteins
and packaged into repeating subunits of chromatin called nucleo-
somes (Kornberg and Lorch, 1999). The importance of specific
genomic sequences in determining the binding locations of nucleo-
somes has recently been confirmed (Segal et al., 2006). A number of
factors point to a relationship between repetitive DNA elements, the
local chromatin environment and epigenetic gene regulation. Densely
compact heterochromatin is enriched for both TEs and SSRs in a
number eukaryotic organisms (Dimitri and Junakovic, 1999). Hetero-
chromatin functions to mitigate potentially deleterious effects
associated with TEs by repressing both element transcription and
ectopic recombination between dispersed element sequences (Grewal
and Jia, 2007). In fact, it has been proposed that heterochromatin
originally evolved to serve as a genome defense mechanism by
silencing TEs (Henikoff and Matzke, 1997; Henikoff, 2000). In the
plant Arabidopsis, de novo heterochromatin formation can be caused
by insertions of TEs into euchromatin, and TEs are able to
epigenetically silence genes when they are inserted nearby or inside
them (Lippman et al., 2004). In other words, TEs have been shown to
cause specific in situ changes in the chromatin environment that can
spread locally and regulate gene expression in a way that is region-
specific but sequence-independent (i.e. epigenetic).

The previously established connections between genome repeats,
chromatin environment and gene regulation for model organisms,
taken together with the repeat-rich nature of the human genome,
suggest that repetitive sequence elements may play a role in
regulating human gene expression by modulating the local chromatin
environment. Specifically, we hypothesized that gene regulatory
related differences in nucleosome binding at human promoter
sequences are mediated in part by repetitive genomic elements. We
evaluated the relationship between nucleosome binding, repetitive
element promoter distributions and human gene expression to test
this idea. Human proximal promoter sequences were characterized
with respect to both their repetitive DNA architectures and predicted
nucleosome binding affinities, and the repetitive DNA environment of
the promoters was considered with respect to patterns of gene
expression.

2. Materials and methods
2.1. Promoter sequence analysis

Our analysis focused on proximal promoter sequence regions,
which we define for a gene as ranging from — 1 kb at the 5’ end to the
transcription start (TSS) at the 3’ end. We relied on the Database of
Transcriptional Start Sites (DBTSS) to identify experimentally charac-
terized TSS, based on aligned full-length cDNA sequences, in the
human genome (Suzuki et al., 2002). These TSS were mapped to the
March 2006 human genome reference sequence (NCBI Build 36.1) and
used to extract 1 kb proximal promoter sequences as described
previously (Marino-Ramirez et al., 2004; Tharakaraman et al., 2005).
This procedure was used to ensure analysis of the most accurate set of
human proximal promoter sequences possible. For the additional
three mammalian species analyzed - chimpanzee (Pan troglodytes),
mouse (Mus musculus) and rat (Rattus norvegicus) - the locations of
proximal promoter sequences were determined based on the 5’ most
position of NCBI Refseq gene models (Pruitt et al., 2007). These
positions were used to download 1 kb proximal promoter sequences
from the latest respective genome builds for each organism from the
UCSC Genome Browser (Karolchik et al., 2003): chimpanzee
n=24,170, mouse n= 20,589 and rat n=_38737.

The program RepeatMasker (Smit et al., 1996-2004) was used to
detect and annotate repetitive elements in the proximal promoter

sequences. RepeatMasker was run using 500 bp of flanking sequence
on either end of the proximal promoter regions analyzed to avoid edge
effects in the detection of repeats. Repetitive elements detected by
RepeatMasker were broken down into two main categories: inter-
spersed repeats, also known as transposable elements (TEs), and
simple sequence repeats (SSRs). SSRs may be annotated as low
complexity sequences and correspond to runs of repeating k-mers
where k=1-13 bp for microsatellites and k= 14-500 for minisatel-
lites. TEs were further divided into specific classes: LINEs, SINEs, LTR
and DNA as well as specific families L1 and Alu.

Proximal promoter sequences, including 500 bp flanks, were
analyzed using the Nucleosome Prediction software developed by the
Segal lab (Segal et al., 2006). This software was used to calculate the
probability of each nucleotide being occupied by a nucleosome in all
promoter sequences. These nucleosome occupancy probabilities are
based on the periodicity of dinucleotides — AA/TT/TA - that are a
characteristic of genomic sequences that have been experimentally
isolated as bound to nucleosomes. Predictions for the relative
placement of nucleosomes along genomic sequence are further
informed by a thermodynamic stability model. The nucleosome
prediction model used in our analysis is based on experimentally
characterized nucleosome bound sequences reported for chicken
(Satchwell et al., 1986). The chicken model has been proven accurate
when used on other vertebrate genomes (Segal et al., 2006). For sets
of promoter sequences, nucleosome occupancy averages were
calculated over each position of the 1 kb proximal promoter regions
and these average values were taken as the position-specific
nucleosome binding affinities (nba) reported here.

Two sets of promoter sequence randomizations were done and
position-specific nucleosome binding affinities were re-calculated on
the randomized sequence sets. The first randomization consisted of
randomly shuffling entire 1 kb proximal promoter sequences. This has
the effect of maintaining overall nucleotide composition of the
promoter sequences while changing the dinucleotide composition as
well as any regional nucleotide biases along the promoters. The
second randomization procedure consisted on randomly shuffling
non-overlapping 100 bp windows along the promoter sequences in
place. This has the effect of maintaining both overall and local
nucleotide compositions of the promoters while changing the
dinucleotide composition.

2.2. Repeat-based promoter clustering

Human proximal promoter sequences were clustered solely based
on their repetitive DNA architectures. To do this, we generated 1000-
unit vectors that represent the position-specific repeat content for
each promoter sequence. A discrete value was assigned to each
promoter sequence position (nucleotide) in the following manner:

1
Xi={ —1
0

where X; represents the nucleotide at position i.

Promoter sequence repeat vectors were then clustered using a
combination of k-means clustering (k=15, 10, 20) and Self Organized
Mapping using the program Genesis (Sturn et al., 2002). We found
that using k-means clustering with k=15 followed by a Self Organized
Map generated the most coherent clusters in terms of the repeat
content of the vectors.

if the nucleotide is part of a TE sequence
if the nucleotide is part of a SSR sequence
if the nucleotide is part of a non—repetitive sequence

2.3. Gene expression analysis

We used version 2 of the Novartis mammalian gene expression
atlas (GNF2), which provides replicate Affymetrix microarray data for
44,775 probes across 79 human tissues (Su et al., 2004). GNF2



14 A. Huda et al. / Gene 436 (2009) 12-22

expression data, in the form of Affymetrix signal intensity values, were
obtained from the UCSC Table Browser (Karolchik et al., 2004), and
Affymetrix probes were mapped to NCBI Refseq identifiers using the
UCSC Table Browser tools. For each gene, the average, maximum and
breadth of expression were computed across the 79 tissues in the
GNF2 data set. Expression breadth is taken as the number of tissues
where the gene has a signal intensity value of >350. Co-expression
between gene pairs was measured by computing the Pearson
correlation coefficient (r) between pairs of gene-specific expression
signal intensity vectors:

gi=[t1, ... t79]

where g; is the ith gene and t, is the expression level for that gene in
the nth tissue.

For each repeat-specific promoter cluster, the average r-value for
all pairwise comparisons between genes in the cluster was computed.
In addition, the difference (diff) between the cluster-specific r-value
averages (cluster-r) and all possible pairwise r-values between genes
(all-r) was computed for each cluster:

diff = cluster—r—all—r.

The significance of these differences was computed using the
normal deviate:

z = diff /seqir

where segi is the standard error of the difference.
2.4. Probabilistic analysis of promoter repeats

We used a probabilistic representation of the repeat content of the
human proximal promoter sequence clusters in order to derive gene
(promoter)-specific similarity scores that indicate the probability that
any human gene (promoter) belongs to a specific repeat cluster. To do
this, each proximal promoter sequence (1 kb upstream of the TSS) in a
cluster was divided into 20 non-overlapping windows of 50 bp each.
For each window (w), the probability (p) of the occurrence of a TE
nucleotide, or SSR nucleotide or a non-repetitive (NR) nucleotide was
calculated separately using the following formula:

_ fb.w +5(b)
pb.w) =57 S s(b)

b'e{T SN}

where fj,,, = counts of base b in window w and b represents counts of
either TE nucleotides, or SSR nucleotides or non-repetitive nucleo-
tides, N=number of sites in the window (50) and s(b)=a
pseudocount function. The probabilities thus calculated for each
window were averaged for all promoters in the cluster. This procedure
was repeated to yield repetitive DNA probabilistic representation
models for each of the six promoter clusters.

All the proximal promoter sequences analyzed were then scored
against each of the six cluster-specific probabilistic models using a log-
likelihood ratio approach illustrated as follows:

LLb'WZh’I Z fbvwll’lfb—"w

TE SSR.NR ﬁ’

where f,w=ppwx50, which is the model frequency used as back-
ground. Promoter-specific scores (S) were then computed as the sum
of log-likelihood ratios over the 20 windows of 50 bp each:

20
S= Y Ly,

w=1

Using this method, we scored all genes (promoters) against each of
the six cluster models to generate six cluster-specific gene (promoter)
score vectors. This modeling and scoring method is a modification of

the approach used to score sequence motifs, such as transcription
factor binding sites, based on motif-characteristic position-weight
matrices (Wasserman and Sandelin, 2004).

In order to relate promoter sequence repetitive DNA architecture
to tissue-specific gene expression, the gene (promoter)-specific
probabilistic repeat cluster scores were correlated with tissue-specific
gene expression signal intensity values for each of the 79 tissues in
GNF. This was repeated with gene (promoter)-specific scores assigned
to each gene for each of the six repeat clusters. For example, for the
cluster1 (c1) versus tissuel (t1) comparison:

cl= [Sgl,ng‘..Syg]g}x t1= [Eg],egz‘..€g7913]

where g; is the ith gene, S is the score for the clusterl model and e is
the expression level for that gene in tissuel. In other words, each gene
analyzed is assigned a repeat probability score for each of the six
clusters, and these six sets of repeat probability promoter scores are
individually correlated with the GNF2 tissue-specific expression
values for the genes. This procedure resulted in a 6x79 matrix of
correlation values.

2.5. Gene Ontology (GO) analysis

GO annotation terms (Ashburner et al., 2000) for human genes
were obtained from the Gene Ontology Annotation database (http://
www.ebi.ac.uk/GOA/). GO terms were further mapped to higher level
GO slim categories. Expected versus observed frequencies of GO slim
terms were compared using y? tests for each promoter repeat cluster,
as well as for the combined TE— and TE+ groups, in order to look for
over-represented GO slim categories. The pairwise similarity between
GO terms was computed using modified semantic similarity method
(Lord et al, 2003; Azuaje et al, 2005) as described previously
(Marino-Ramirez et al., 2006; Tsaparas et al., 2006). The GO similarity
difference (GOdiff) was calculated between the average pairwise
similarity for GO terms from pairs of genes within TE groups (e.g. TE
+) and the average pairwise GO similarity for all possible pairs of
genes:

GOdiff = GOsim—(TE +)—GOsim— (all).

The significance of the difference was measured using the normal
deviate as described for the gene expression analysis.

2.6. Statistical analysis

Standard statistical tests were used to compare population means
for pairwise (Student's t-test) and for multiple comparisons (ANOVA),
to correlated vectors of nucleosome binding affinities, TE and SSR
densities, expression and promoter score values (Pearson correlation
coefficient), to control for the confounding effects of multiple variables
on correlation values obtained (partial correlation) and to evaluate the
difference between observed and expected GO terms ( y?) (Zar, 1999).

3. Results and discussion
3.1. Repetitive DNA and nucleosome binding affinity

Experimentally characterized human gene proximal promoter
sequences (n=7913) were taken from the Database of Transcriptional
Start Sites (DBTSS) (Suzuki et al., 2002) and analyzed with respect to
their repetitive DNA content and nucleosome binding affinities. The
locations of repetitive DNA elements along promoter sequences were
determined by the RepeatMasker program and nucleosome binding
affinities were predicted using the method of (Segal et al. (2006). Two
classes of repetitive DNA were analyzed separately: interspersed
repeats, also known as transposable elements (TEs) and simple
sequence repeats (SSRs), which are made up of runs of exact or nearly
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exact repeating k-mers. For each promoter position, from 1 kb
upstream to the transcriptional start site (TSS), the average TE and
SSR densities over all promoter sequences were calculated as the
fraction of sequences for which that position was occupied by a TE or
SSR. Average nucleosome binding affinities across promoter positions
were calculated as the fraction of sequences for which a given position
was predicted to be occupied (bound) by a nucleosome. Average
nucleosome binding affinities and the average TE density follow
parallel trends along the proximal promoter regions (Fig. 1a).
Nucleosomes bind more tightly and TEs are found more frequently
distal to the TSS, whereas nucleosomes bind promoter sequences most
proximal to the TSS with lower affinity and TEs are rarely found close to
the TSS. SSRs show a distinctly different trend with a higher density
close to the TSS that corresponds to the decrease in nucleosome
binding affinity. The SSR density matches the nucleosome binding
even more closely than the TE density just upstream of the TSS.
Nucleosome binding affinities decrease steadily from distal regions
until ~35 bp upstream of the TSS, then the nucleosome binding affinity
increases towards the TSS. Similarly, the SSR density increases to the
same point and then drops off as the nucleosome binding affinity
increases (Fig. 1a). This core promoter region where nucleosome
binding affinity is at its lowest and SSR density is at its highest
corresponds to the location where the basal transcriptional machinery
assembles, and RNA polymerase I binds, to initiate transcription.

The correlations between nucleosome binding affinities with TE
and SSR densities along human proximal promoter regions are robust
and highly statistically significant (Fig. 1b). Previously, we observed

Fig. 1. Repetitive DNA density and nucleosome binding affinity along human proximal
promoter sequences. (a) Average nucleosome binding affinities (green line, values on
left y-axis) along with average TE densities (blue line, values on right y-axis) and
average SSR densities (pink line, values on right y-axis) over 7913 human proximal
promoter sequences are plotted over each promoter position starting from — 1000 bp
upstream and progressing to the transcriptional start site (TSS at position 0). (b) Linear
trends and correlations relating position-specific nucleosome binding affinities (y-axis)
to TE (blue) and SSR (pink) densities (x-axis) are shown. Statistical significance levels
of the r-values are based on the Student's t-distribution with df=n—2 =998 where
t=r*sqrt((n—2) /(1 —1?)).

Fig. 2. Nucleosome binding properties for repetitive versus non-repetitive DNA. (a)
Average predicted nucleosome binding affinities are shown for TE, SSR and non-
repetitive human promoter sequences. (b) Periodicity of the nucleosome binding
(wrapping) characteristic dinucleotides AA/TT/TA are shown for 39 experimentally
characterized nucleosome bound TE sequences from chicken. (c) Histogram showing
the inter-peak distances for AA/TT/TA dinucleotides.

that nucleotide composition changes markedly along human proximal
promoter sequences with an increase in CpG frequency close to the
TSS (Marino-Ramirez et al., 2004), while the nucleosome binding
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Table 1
Average* nucleosome binding affinities for TE classes (families)

TE class (family)? Avg nba+s.e.”

L1 0.849 + 6.8e-4
LINE other 0.805 4- 7.6e-4
Alu 0.51045.2e-4
SINE other 0.789 4+ 7.0e-4
LTR 0.807 4-7.9e-4
DNA 0.802 +9.8e-4

¢ TEs are broken down by class (family) using RepeatMasker. The L1 and Alu families
are considered separately from all other LINEs and SINEs respectively. All LTR and DNA
elements are considered together as classes.

b Average nucleotide binding affinities + standard errors.

*All differences are statistically significant (ANOVA, F=2.8e4, P~0).

prediction method we employed in this analysis relies on the
periodicity of AT-rich dinucleotides (Segal et al., 2006). Thus, it is
possible that the high (low) nucleosome binding affinity of TE (SSR)
sequences in proximal promoter regions is a corollary effect of local
differences in nucleotide composition. We attempted to control for
this possibility in several ways. First of all, average nucleosome
binding affinities were computed for all TE, SSR and non-repetitive
sequences irrespective of their locations along proximal promoter
regions. On average, TE sequences bind nucleosomes most tightly,
followed by non-repetitive DNA and SSRs, which have the lowest
nucleosome affinities (Fig. 2a); all differences are highly statistically
significant (ANOVA, F=4.5e11, P=0).

In addition to the binding affinity observations that are based on
the nucleosome prediction software, we also analyzed the nucleo-
some wrapping characteristic AA/TT/TA dinucleotide frequencies
along experimentally characterized nucleosome bound sequences
from chicken (Satchwell et al., 1986) that we identified as being
derived from TEs (n=39). The chicken TE sequences show the
characteristic AA/TT/TA dinucleotide periodicity expected of nucleo-
some bound sequences (Fig. 2b); in fact, the average distance between
dinucleotide peaks for these TE sequences is ~10.3 bp, which is close
to the expected distance of 10.2 bp corresponding to one turn of the

DNA helix (Fig. 2c). This is significant because DNA sequences are
thought to wrap around nucleosomes by bending sharply at each
repeating turn of the DNA helix, and this sharp bending is facilitated
by the specific AA/TT/TA dinucleotides (Widom, 2001).

We also attempted to control for nucleotide composition effects by
randomizing promoter sequences and re-calculating nucleosome
binding affinities. First, entire 1 kb promoter sequences were
randomized and nucleosome binding affinities were re-calculated.
This control procedure has the effect of eliminating both native
dinucleotide occurrences and local nucleotide composition biases. The
average nucleotide binding affinity for such randomized promoter
sequences (nba=20.16) is ~3x lower than seen for the observed
promoter sequences (nba=0.49), and the difference between
random and observed affinities is highly significant (t=23,
P=5.3e-100). In addition to differences in the magnitude of the
nucleosome binding affinities, the relative affinity trends along the
promoters were compared for the random versus observed sets.
Partial correlation was used to control for the effects of the random
sequences on the observed relationship between nucleosome binding
affinity with TE and SSR densities along proximal promoters. The
positive (negative) correlations between nucleosome binding for TE
(SSR) do not change when the correlations between random
sequences and nucleosome binding along the promoters are
accounted for [rnpa-Tejrandom1 = 0.99 and rnpa.ssrjrandom1 = 0.85].

A second randomization procedure was done to account for local
differences in nucleotide composition along proximal promoter
sequences. In this case, sequences were randomized within non-
overlapping 100 bp windows along the promoters. This had the effect of
eliminating native dinucleotide occurrences while maintaining local
nucleotide composition. As with the complete sequence randomization
procedure, the locally randomized sequences have significantly lower
nucleosome binding affinities (nba=0.23) than the observed
sequences (nba=0.49), and this 2.1x difference is highly statistically
significant (t=17, P=>5.0e-55). Clearly, local nucleotide composition
alone cannot explain the observed nucleosome binding affinities.
However, the relative trends in nucleosome binding show different

Fig. 3. Clusters of human proximal promoters based on their repetitive DNA sequence distributions. Proximal promoter sequences are represented left-to-right from position
— 1000 bp upstream to the transcriptional start site (TSS). Promoter sequences are color coded according to their repeat element distributions. Individual promoter nucleotide
positions occupied by TEs are shown in blue, SSR positions are shown in yellow and non-repetitive positions are shown in black. The vertical size of the clusters corresponds to the
number of sequences in each cluster. There are two (c1 and c2) clusters that contain promoters largely devoid of TE sequences (TE—), and the promoter sequences of the remaining

four clusters (TE+, c3-c6) contain increasing numbers of TEs.
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Fig. 4. Gene expression comparison for TE— versus TE+ promoter clusters. Human
gene expression data are from the Novartis mammalian gene expression atlas version
2 (GNF2). (a) Average level of expression, (b) maximum level of expression and (c)
breadth of expression across 79 human tissues (cells) are compared for genes that
have TE— versus TE+ promoter sequences. Statistical significance levels are based on
the Student's t-test.

local nucleotide composition effects for TEs versus SSRs. The partial
correlation controlling for the effects of local nucleotide composition on
the relationship between TE density and nucleosome binding elim-
inates the positive correlation seen across the entire promoter for the
observed data [rnpa.TEjrandom2 = — 0.14]. This suggests that local
nucleotide composition bias influences the decreasing trend in
nucleosome binding affinities along proximal promoters irrespective
of TE density. Interestingly, this same mitigating effect of local
nucleotide composition is not seen for the relationship between SSRs
and nucleosome binding [rpa.ssrirandom2 = —0.53]. This suggested the

possibility that most of the local nucleotide composition bias effect on
the relationship between TEs and nucleosome binding may be confined
to the region closest to the TSS where TEs are largely absent and SSRs
are at their most dense (Fig. 1a). Indeed, when partial correlation
controlling for local nucleotide bias is done excluding 150 bp upstream
of the TSS, the positive correlation between TEs and nucleosome
binding affinity remains [—1000 to — 150 rypa.TEjrandom2 = 0.76]. In
other words, positive TE effects on nucleosome binding are most
evident away from the TSS, while the SSRs that inhibit nucleosome
binding act closest to the TSS.

Taken together, these data suggest the intriguing possibility that
the human genome utilizes repetitive DNA content along promoter
regions to tune nucleosome binding in such a way as to facilitate
maximum access of the basal transcriptional machinery just upstream
of TSS. Furthermore, different classes of repeats play distinct roles in
this process; TEs bind nucleosomes tightly yielding compact less
accessible DNA, while SSRs extrude nucleosomes creating a relatively
open chromatin environment.

3.2. Cross-species comparison

In addition to the human genome analysis, the relationship
between nucleosome binding and repetitive DNA content of
proximal promoter regions was evaluated for four additional mamma-
lian species with complete genome sequences available: chimpanzee
(P. troglodytes), mouse (M. musculus) and rat (R. norvegicus). For these
species, NCBI Refseq gene models were used to define TSS and proximal
promoter regions, while TE and SSR repeats and nucleosome binding
were analyzed as was done for the human genome. The trends observed
for human are highly similar to those seen for the other mammalian
species (Supplementary Fig. 1). In chimpanzee, mouse and rat,
nucleosome binding affinities decrease steadily along the proximal
promoter region until the core promoter, <50 bp from the TSS, where
nucleosome binding begins to increase. For these three species, TE
density drops precipitously and steadily along the proximal promoter
while SSR density increases sharply at first in the core promoter near
the TSS and then drops off again as nucleosome binding affinity
increases. Thus, repeat-rich mammalian genomes appear to use
repetitive DNA elements to tune nucleosome binding and core
promoter accessibility in similar ways. The conservation of the
relationship between repetitive DNA and nucleosome biding in core
promoters of several mammalian species suggests that this mechanism
may have evolved early in the mammalian radiation as repetitive

Fig. 5. Gene co-expression for repeat-specific proximal promoter clusters. Average
pairwise Pearson correlation coefficients (r) for gene expression across 79 human
tissues are shown for clusters 1-6 (see Fig. 3) as well as for the TE— versus TE+ clusters
(inset). Statistical significance levels are based on ANOVA for multiple comparisons and
on the Student's t-test for the TE— versus TE+ comparison.
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Fig. 6. Differences in gene co-expression between cluster-specific gene pairs versus all
possible pairs of genes. Average pairwise Pearson correlations (r) for gene expression
across 79 human tissues were measured for all possible gene pairs and this value was
subtracted from the average pairwise r-values for genes within each repeat-specific
cluster (c1-c6). A negative value indicates that genes within the cluster have less
similar co-expression than background, whereas a positive value indicates that genes
within a cluster are more highly co-expressed than expected.

elements were proliferating within genomes. However, many of the
repetitive elements that yield these patterns evolve rapidly and are
lineage-specific. Accordingly, there may be an ongoing dynamic
between repeat generation by mutation and/or transposition followed
by selection based on the promoter location of the repeat and specific
requirements for chromatin accessibility. For TEs in particular, this
could simply mean that the elements are eliminated from core
promoter regions close to the TSS by purifying selection. Indeed,
negative selection against TE insertions closest to TSS would seem to be
the easiest way to explain the observed pattern of TE density (Fig. 1a
and Supplementary Fig. 1). However, our analysis of gene expression
data, described in following sections, suggests that this is not the case.
SSRs, on the other hand, appear to be favored in core promoter regions.

3.3. TE-specific effects on nucleosome binding affinity

The Repbase library of repetitive DNA elements used by the
program RepeatMasker can be used to annotate TEs into different
classes and families (Jurka et al., 2005; Kapitonov and Jurka, 2008).
Using this approach, human TE sequences were divided into LINEs, (L1
and other LINES), SINEs (Alu and other SINEs), LTR retrotransposons,
and DNA transposons to determine if different classes (families) of
elements show differential nucleosome binding affinities (Table 1). In
general, LINEs, LTR retrotransposons and DNA transposons have
higher affinities for nucleosomes compared to SINEs. Specifically, L1
elements exhibit the highest nucleosome binding affinities while Alu
elements display the lowest affinity for nucleosomes. All differences
are statistically significant (Table 1, ANOVA).

The differences in nucleosome binding affinities between L1 and
Alu are consistent with their respective nucleotide compositions and
perhaps also relevant to their genomic distributions. L1 elements, and
LINEs in general, are more AT-rich than Alus (SINEs), and AT-rich
sequences are more likely to bind nucleosomes tightly as discussed
previously. L1 elements are also biased towards intergenic regions in
their distribution, while Alu elements are found primarily in gene rich
regions. In fact, it has been shown that Alus are preferentially retained
in GC- and gene-rich regions of the genome, and this has been taken to
suggest that they may be selectively fixed therein by virtue of some
gene-related function that they play (Lander et al,, 2001). Our data
showing lower nucleosome binding for Alu elements suggests that
they may be retained in gene regions by virtue of their ability to
maintain a relatively open chromatin environment. Conversely, L1
elements may help to maintain compact chromatin structure
characteristic of intergenic regions.

3.4. Promoter repeat architecture and gene expression levels

In light of the observed relationship between repetitive DNA
elements and nucleosome binding, we used the repetitive DNA
content of proximal promoter regions to group human genes into
related clusters. The gene expression and functional properties of the
clusters were then compared to their characteristic repeat architec-
tures. To cluster human genes using their promoter repeat distribu-
tions, proximal promoter sequences were represented as 1000-unit
vectors with each position in a sequence-specific vector receiving a
score indicating whether that particular nucleotide is part of a TE, SSR
or non-repetitive sequence. These gene-specific promoter repeat
vectors were then compared using a distance metric and clustered as
described (Materials and methods). This approach ensured that the
clusters reflect both the abundance, or lack thereof, and the location of
distinct repetitive DNA elements in human promoter sequences. In
other words, this scheme relates human genes solely by virtue of their
promoter repeat distributions.

We obtained six repeat-specific clusters of human genes in this
way (Fig. 3), each cluster representing a distinct overall pattern of TE
and/or SSR content and distribution. Two of these clusters (c1 and c2,
TE—) consist of genes that are largely devoid of TEs, while four consist
of genes with increasing TE densities (c3-c6, TE+). c1 does not
contain any repetitive DNA, while 2 is enriched in SSR sequences and
has very low TE content. c3-c6 have progressively more TE content
with locations shifting slightly towards the TSS.

The gene expression properties of the human genes in these
clusters were analyzed using version 2 of the Novartis mammalian
gene expression atlas (GNF2) (Su et al., 2004). This data set consists of
Affymetrix microarray experiments, performed in replicate, on 79
different human tissue (cell) samples. For each human gene, over 79
tissues, we computed the average expression level, maximum
expression level and breadth of expression as described (Materials
and methods); cluster-specific averages for each of these parameters
were then compared (Fig. 4). We were surprised to find that clusters
that contain TEs (c3-c6, TE+) have higher average, maximum and
breadth of expression than clusters that are largely devoid of TEs (c1
and c2, TE—). Gene expression levels are known to correlate with a

Fig. 7. Promoter repetitive DNA architecture and tissue-specific gene expression. Probabilistic models were used to represent the repetitive DNA architectures of each repeat-specific
cluster (see Fig. 3 and Supplementary Fig. 2). Cluster-specific probabilistic models were used to score individual promoter sequences in terms of how closely they resemble a given
cluster (Materials and methods). Vectors of cluster-specific gene scores were correlated with vectors of gene expression values specific human tissues. (a) A heat map illustrating the
relative correlation values between gene (promoter)-specific scores for each cluster and tissue-specific gene expression values for the 79 tissues in the Novartis gene expression atlas
version 2 (GNF2). Relatively high (positive) correlations between gene-cluster scores and gene expression levels are shown in red and low (negative) correlations are shown in blue.
Two specific examples of such correlations are shown in panels b and c. (b) Gene (promoter)-specific scores based on the probabilistic model for cluster 2 are negatively correlated
with gene expression levels in a B lymphoblast cell line. (c) Gene (promoter)-specific scores based on the probabilistic model for cluster 6 are positively correlated with gene
expression levels in a B lymphoblast cell line. In other words, genes with repetitive DNA promoter profiles that most closely resemble cluster 6 are more highly expressed in the B
lymphoblast cell line, whereas genes with repetitive DNA promoter profiles that resemble cluster 2 have lower levels of B lymphoblast expression.
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number of measures of gene ‘importance’ such as sequence and
phylogenetic conservation, fitness effects, numbers of protein inter-
actions, etc. (Duret and Mouchiroud, 2000; Pal et al., 2001; Krylov
et al., 2003; Zhang and Li, 2004; Wolf et al., 2006). In other words,
genes that are more highly and broadly expressed are under greater
purifying selection than genes with lower expression levels. If TEs are
eliminated from proximal promoter sequences by purifying selection,
then one may expect that TE+ promoters would have lower, and not
higher as we observe, levels of gene expression than TE— promoters.
In other words, our analysis of repeat cluster gene expression levels
argues against the straightforward interpretation that the paucity of
TEs in proximal promoter sequences, and their decreasing frequency
closer to TSS, is a result of purifying selection against disruptive
insertions in core promoters.

On the other hand, one may expect that genes with more
restricted and more tightly regulated expression, such as develop-
mental genes, would have more TE sensitive promoters than genes
that are highly and broadly expressed. In fact, developmental genes
are known to have promoters that are largely devoid of TEs (Simons
et al., 2006, 2007). This may reflect the fact that such genes are
more finely and tightly regulated and accordingly contain more
complex promoters with higher numbers of cis-regulatory elements.
If this is indeed the case, then the paucity of TEs in proximal
promoter regions may still be explained, to some extent, by
purifying selection against disruptive insertions. Discrimination
between these two hypotheses regarding the selective elimination,
or lack thereof, of proximal promoter TE sequences awaits further
analysis.

3.5. Promoter repeat architecture and tissue-specific gene co-expression

In addition to analyzing repeat cluster gene expression levels, we
also evaluated the relationship between the tissue-specific expression
patterns of genes across the 79 tissues from GNF2 and their promoter
repeat content. To do this, gene-specific vectors of expression levels
across tissues were compared using the Pearson correlation coeffi-
cient (r); positive values of r indicate gene pairs that are co-expressed
across tissues. For each cluster, average r-values were computed based
on all pairwise comparisons within the cluster (Fig. 5). Higher average
r-values are associated with increasing TE promoter content of the
clusters. For instance, there is a positive (R=0.77), albeit marginally
significant (z=1.72, P=0.1), rank correlation between cluster TE
content and co-expression. In addition, all four TE+ clusters have
greater average co-expression than either of the TE— clusters, and the
average r-value for TE+ clusters together is significantly greater than
seen for the combined TE— clusters (Fig. 5).

The possibility of gene co-regulation within repeat clusters was
also evaluated by taking the difference between the average r-value
for all pairwise comparisons within clusters to average pairwise 1-
value for all gene comparisons (Materials and methods) (Fig. 6). If
genes within clusters are co-regulated, then the value of this
difference should be positive, whereas no co-regulation will yield a
negative difference value. The TE— clusters 1 and 2 have negative
difference values indicating that genes with no TEs in their promoters
are less co-expressed with other genes possessing a similar lack of
repeats than they are with all genes. On the other hand, the TE+
clusters 3-6 all have positive difference values further demonstrating
that genes with similar repetitive DNA profiles in their promoters are
more closely co-expressed than random pairs of genes. The difference
values for each cluster are statistically significant (7.3>z>100.6, 1.4e-
13<P<0).

Taken together, these observations on gene co-expression also argue
against the notion that TE insertions in proximal promoter sequences
are basically disruptive or deleterious, since the presence of similar TE
promoter distributions implies a higher level of gene co-regulation than
the absence of TEs does. This is not to say that the majority of de novo TE

insertions in and around functional promoter sequences are not
deleterious, clearly they are. However, the repeat sequences that have
been fixed in proximal promoter sequences do appear to make
functionally relevant contributions to chromatin accessibility and help
to regulate levels and specific patterns of gene expression.

3.6. Probabilistic analysis of promoters and gene expression

Given the relationship between gene expression and the repetitive
DNA architecture of human promoters we observed, we wanted to
further evaluate the propensity of human genes to be expressed in
specific tissues based on the repetitive DNA content of their promoters.
To do this, we used a probabilistic representation of cluster-specific
promoter architectures together with the GNF2 expression data. This
involved partitioning 1 kb proximal promoter sequences into 20 non-
overlapping windows of 50 bp each, and for a given cluster,
representing the probability of observing TE, SSR or non-repetitive
nucleotides in each window (Materials and methods). The proba-
bilistic representation of promoter repeat architectures we employed
is mathematically analogous to the probabilistic representations of
position weight matrices (PWMs) used to summarize position-specific
residue frequencies among collections of sequence motifs such as
transcription factor biding sites (Wasserman and Sandelin, 2004).
Accordingly, promoter repeat profiles can be represented as sequence
logos showing the probability and distribution for sites of different
repeat classes (Supplementary Fig. 2). The cluster-specific promoter
repeat profiles can then be used to score individual promoter
sequences just as PWM representations can be used to score putative
motif sequences. Connecting these cluster- and position-specific
promoter repeat profiles to tissue-specific gene expression profiles
was done in a way that is similar to the methodology used to connect
the presence of transcription factor binding site motifs to specific gene
expression patterns (Conlon et al., 2003).

For each of the 79 tissues in GNF2, each promoter sequence was
given six cluster-specific scores, and for each cluster, the gene-specific
scores were correlated with the tissue-specific gene expression levels
(Materials and methods). This resulted in a 6-by-79 matrix of cluster-
by-tissue correlations (Fig. 7). The TE+4 clusters 4 and 6 show
particularly high correlations with a number of tissues, such as B
lymphoblasts (Figs. 7b and c), whereas the TE— clusters 1 and 2 show
low correlations with the same tissues and lower correlations overall.
This indicates that certain repeat-rich promoter architectures play a
role in driving tissue-specific expression, while repeat poor promoters
have less coherent regulatory properties. In addition, the differences in
promoter score-expression level correlations across tissues and
between clusters indicate that different repeat contexts are likely to
have tissue-specific regulatory functions. Hierarchical clustering of the
tissues and the clusters, according to the promoter score-expression
level correlations, group related tissues together including reproduc-
tive tissues, immune related cells and cancer samples (Fig. 7a). This
indicates that TE-rich promoters may help to regulate genes that
function specifically in these tissues further underscoring the biological
significance of promoter sequence repetitive DNA profiles.

3.7. Gene Ontology analysis

Having established a connection between repetitive DNA promoter
architectures and gene regulation, we wondered whether genes with
similar promoter repeat distributions encoded proteins with related
functions. In order to test this, we used analysis of Gene Ontology (GO)
terms for genes within and between the TE— versus the TE+ repeat-
specific promoter clusters (Fig. 3). A modified version of the GO
semantic similarity measure (Lord et al., 2003; Azuaje et al., 2005) was
used to compare the similarities between GO terms within clusters
versus the background GO similarity among all pairs of genes. As
described previously (Marino-Ramirez et al., 2006; Tsaparas et al.,
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Table 2
Over-represented® GO slim? terms for repeat-specific promoter clusters

Group® Molecular function® Cellular component® Biological process®
MBS G0:0030528: transcription regulator activity - G0:0007154: cell communication
G0:0007275: multicellular organismal development
G0:0050789: regulation of biological process
NESES G0:0003824: catalytic activity G0:0005737: cytoplasm G0:0006810: transport
G0:0016491: oxidoreductase activity G0:0007154: cell communication
C1 G0:0005198: structural molecule activity - -
C2 G0:0016301: kinase activity - G0:0007154: cell communication
G0:0016491: oxidoreductase activity G0:0007275: multicellular organismal development
G0:0030528: transcription regulator activity G0:0007610: behavior
G0:0030154: cell differentiation
G0:0050789: regulation of biological process
3 - - -
Cc4 G0:0003824: catalytic activity G0:0005737: cytoplasm G0:0006944: membrane fusion
G0:0009056: catabolic process
C5 G0:0004872: receptor activity G0:0009986: cell surface GO0:0050896: response to stimulus
G0:0005215: transporter activity
G0:0022857: transmembrane transporter activity
C6 G0:0003824: catalytic activity G0:0005622: intracellular G0:0008152: metabolic process
G0:0005737: cytoplasm G0:0009058: biosynthetic process
¢ GO slim categories provide a high level view of GO functions and subsume a number of lower (more granular) GO functional annotation categories.
b Repeat-specific clusters 1-6 along with the combined TE+ and TE— groups (see Fig. 3).
€ GO functional annotation categories.
*

2006), the GO semantic similarity approach measures the pairwise
similarity between annotation terms along the GO directed acyclic
graph in order to evaluate the functional similarity between pairs of
genes. For TE— and TE+ genes, the GO similarity difference (GOdiff) is
equal to the average GO similarity for all gene pairs within clusters
minus the average GO similarity for all possible gene pairs (Materials
and methods). Negative values of GOdiff indicate that gene pairs are
more similar within clusters than for all possible pairs. Both the TE—
and TE+ gene sets encode proteins that are significantly more
functionally similar than the background comparison set [TE—=
—3.4e-3,z=34, Px~0; TE+ = —7.9e-3, z= 11, P=4.8e-3]. However,
within the TE+ clusters, pairs of genes encode proteins that are
significantly more functionally similar, on average, than the pairs of
genes found within the TE— clusters (t=5.8, P=6.4e-9). This is
consistent with the stronger signal of gene co-regulation seen for
clusters of promoter sequences that are enriched for TEs and under-
scores the potential biological significance of repeat-rich promoter
sequences in the human genome.

Given the functional coherence of repeat-specific clusters demon-
strated by the GO similarity analysis, we wanted to evaluate whether
certain GO functional categories are over-represented within specific
clusters. To do this, we traced the GO terms represented in the dataset to
GO slim terms (Table 2). GO slim categories provide a higher level view
of more granular individual GO annotations in order to provide an
overview of the kinds of functions that may be over-represented in
different groups. The observed counts of GO slim categories for each of
the six repeat-specific clusters, as well as for the combined TE— and TE
+, groups were compared to their expected values based on the
background GO slim frequencies across all clusters to look for over-
represented terms. Genes in the electron transport, cytoplasm, catalytic
activity and oxidoreductase activity categories were found to be over-
represented in TE+ clusters and accordingly under-represented in the
TE— clusters, whereas genes in cell communication, multicellular
organismal development, regulation of biological process and tran-
scription regulator activity categories are over-represented in TE—
clusters and under represented in TE+ clusters. Evaluation of over-
represented GO terms in individual clusters reveals coherence across
the three categories of GO terms: molecular function, cellular
component and biological process. For instance, the TE+ cluster 5 has
an over-represented receptor and transporter activities in the molecular
function category that agree with the cell surface cellular component
term and the response to stimulus biological process term. The over-

Statistical significance for over-represented terms was evaluated using with y? tests with at least y?>>4.2, P<0.04.

represented catalytic activity molecular process term for the most TE-
rich cluster 6 corresponds to a cytoplasmic cellular component term
along with metabolic and biosynthetic biological process terms. In a
general sense, the coherence of GO functional annotations within
repeat-specific clusters and the differences between clusters are
consistent with biological significance of the regulatory differences
seen for these clusters.

4. Conclusion

We have uncovered a connection between repetitive DNA sequences
and nucleosome binding in human proximal promoter regions along
with an influence of repetitive DNA promoter sequences on specific
patterns of gene expression. Interestingly, different classes of repetitive
elements function differently to mediate nucleosome binding; TEs bind
nucleosomes tightly and are generally excluded from core promoter
regions, while SSRs have a low affinity for nucleosomes and are en-
riched just upstream of TSSs. Thus, it appears that repetitive sequence
elements are differentially utilized to tune the accessibility to promoter
sequences by transcription factors, particularly the basal transcriptional
machinery that assembles just upstream of the TSS, via changes in the
local chromatin environment.
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Chapter 1

Identification of cis-Regulatory Elements in Gene
Co-expression Networks Using A-GLAM

Leonardo Mariiio-Ramirez, Kannan Tharakaraman, Olivier Bodenreider,
John Spouge, and David Landsman

Abstract

Reliable identification and assignment of cis-regulatory elements in promoter regions is a challenging
problem in biology. The sophistication of transcriptional regulation in higher eukaryotes, particularly in
metazoans, could be an important factor contributing to their organismal complexity. Here we present an
integrated approach where networks of co-expressed genes are combined with gene ontology—derived
functional networks to discover clusters of genes that share both similar expression patterns and functions.
Regulatory elements are identified in the promoter regions of these gene clusters using a Gibbs sampling
algorithm implemented in the A-GLAM software package. Using this approach, we analyze the cell-cycle
co-expression network of the yeast Saccharomyces cerevisine, showing that this approach correctly identifies
cis-regulatory elements present in clusters of co-expressed genes.

Key words: Promoter sequences, transcription factor-binding sites, co-expression, networks, gene
ontology, Gibbs sampling.

1. Introduction

The identification and classification of the entire collection of
transcription factor-binding sites (TFBSs) are among the greatest
challenges in systems biology. Recently, large-scale efforts invol-
ving genome mapping and identification of TFBS in lower eukar-
yotes, such as the yeast Saccharomyces cerevisine, have been
successful (1). On the other hand, similar efforts in vertebrates
have proven difficult due to the presence of repetitive elements and
an increased regulatory complexity (2-4). The accurate prediction
and identification of regulatory elements in higher eukaryotes
remains a challenge for computational biology, despite recent
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progress in the development of algorithms for this purpose (5).
Typically, computational methods for identitying cis-regulatory
elements in promoter sequences fall into two classes, enumerative
and alignment techniques (6). We have developed algorithms that
use enumerative approaches to identify cis-regulatory elements
statistically significantly over-represented in promoter regions
(7). Subsequently, we developed an algorithm that combines
both enumeration and alignment techniques to identify statisti-
cally significant cis-regulatory elements positionally clustered rela-
tive to a specific genomic landmark (8).

Here, we will present a systems biology framework to study czs-
regulatory elements in networks of co-expressed genes. This
approach includes a network comparison operation, namely the
intersection between co-expression and functional networks to
reduce complexity and false positives due to co-expression linkage
but absence of functional linkage. First, co-expression (9, 10) and
functional networks (11, 12) are created using user-selected thresh-
olds. Second, the construction of a single network is obtained from
the intersection between co-expression and functional networks
(13). Third, the highly interconnected regions in the intersection
network are identified (14). Fourth, upstream regions of the gene
clusters that are linked by both co-expression and function are
extracted. Fifth, candidate cis-regulatory elements using A-GLAM
(8) present in dense cluster regions of the intersection network are
identified. In principle, the calculation of intersections for other
types of networks with co-expression and /or functional networks
could also be used to identify groups of co-regulated genes of
interest (15) that may share cis-regulatory elements.

2. Materials

2.1. Hardware
Requirements

2.2. Software
Requirements

1. Personal computer with at least 512 MB of random access
memory (RAM) connected to the Internet.

2. Access to a Linux or UNIX workstation.

1. The latest version of the Java Runtime Environment (JRE)
freely available at http://www.java.com/.

2. The latest version of Cytoscape — a bioinformatics software
platform for visualizing molecular interaction networks (13)
freely available at http: //www.cytoscape.org/.

3. The latest version of the MCODE plug-in for Cytoscape —
finds clusters or highly interconnected regions in any network
loaded into Cytoscape (14) freely available at http://cbio.mskec.
org/~bader/software /mcode/.
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4. A modern version of the Perl programming language installed
on the Linux or UNIX workstation freely available at http: //
www.perl.com/.

5. The A-GLAM package (8) freely available at ftp: //ftp.ncbi.
nih.gov/pub/spouge/papers/archive/AGLAM /.

3. Methods

The size of co-expression networks depends on the number of
nodes in the network and the threshold used to define an edge
between two nodes. There are a number of distance measures that
are often used to compare gene expression profiles (16).

Here we use the Pearson correlation coefficient (PCC) as a
metric to measure the similarity between expression profiles
and to construct gene co-expression networks (17, 18). We
establish a link by an edge between two genes, represented by
nodes, if the PCC value is higher or equal to 0.7; this is an
arbitrary cut-off that can be adjusted depending on the dataset
used. The microarray dataset used here is the yeast cell-cycle
progression experiment from Cho et al. (9) and Spellman
et al. (10). The semantic similarity method (11) was used to
quantitatively assess the functional relationships between
S. cerevisine genes.

The A-GLAM software package uses a Gibbs sampling algo-
rithm to identify functional motifs (such as TFBSs, mRNA
splicing control elements, or signals for mRNA 3’-cleavage
and polyadenylation) in a set of sequences. Gibbs sampling (or
more descriptively, successive substitution sampling) is a
respected Markov-chain Monte Carlo procedure for discover-
ing sequence motifs (19). Briefly, A-GLAM takes a set of
sequences as input. The Gibbs sampling step in A-GLAM uses
simulated annealing to maximize an ‘overall score’, a figure of
merit corresponding to a Bayesian marginal log-odds score. The

overall score is given by
cij +a;—1)!
oz - s p}> i
: !

In Eq. [1], m! = m(m — 1) ... 1 denotes a factorial; a;, the pseudo-
counts for nucleic acid 5 in each position; 2 = a1 + a; + a3 + a4, the
total pseudo-counts in each position; ¢;;, the count of nucleic acid 7 in
position z; and ¢ = ¢;1 + cia + ¢i3 + ¢i4, the total number of aligned
windows, which is independent of the position . The rationale behind
the overall score s in A-GLAM is explained in detail elsewhere (8).

. a—1)!
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To initialize its annealing maximization, A-GLAM places a single
window of arbitrary size and position at every sequence, generating
a gapless multiple alignment of the windowed subsequences. It
then proceeds through a series of iterations; on each iteration step,
A-GLAM proposes a set of adjustments to the alignment. The pro-
posal step is either a repositioning step or a resizing step. In a
repositioning step, a single sequence is chosen uniformly at random
from the alignment; and the set of adjustments include all possible
positions in the sequence where the alignment window would fit
without overhanging the ends of the sequence. In a resizing step,
cither the right or the left end of the alignment window is selected;
and the set of proposed adjustments includes expanding or contract-
ing the corresponding end of all alignment windows by one position
at a time. Each adjustment leads to a different value of the overall
score 5. Then, A-GLAM accepts one of the adjustments randomly,
with probability proportional to exp(s/7T). A-GLAM may even
exclude a sequence if doing so would improve alignment quality.
The temperature 7T is gradually lowered to T' = 0, with the intent of
finding the gapless multiple alignment of the windows maximizing s.
The maximization implicitly determines the final window size. The
randomness in the algorithm helps it avoid local maxima and find
the global maximum of's. Due to the stochastic nature of the proce-
dure, finding the optimum alignment is not guaranteed. Therefore,
A-GLAM repeats this procedure ten times from different starting
points (ten runs). The idea is that if several of the runs converge to
the same best alignment, the user has increased confidence that it is
indeed the optimum alignment. The steps (below) corresponding to
E-values and post-processing were then carried out with the PSSM
corresponding to the best of the ten scores s.

The individual scove and its E-value in A-GLAM: The
Gibbs sampling step produces an alignment whose overall score
s is given by Eq. [1]. Consider a window of length w that is
about to be added to A-GLAM’s alignment. Let J,(7) equal 1 if
the window has nucleic acid j in positionZ, and 0 otherwise.
The addition of the new window changes the overall score by

S A

The score change corresponds to scoring the new window accord-
ing to a position-specific scoring matrix (PSSM) that assigns the
‘individual score’

) = lows | (52 1y 3)

c+a

to nucleic acid j in position:. Equation [ 3] represents a log-odds
score for nucleic acid 7 in position 7 under an alternative hypothesis
with probability (¢ + #;)/(c+ a) and a null hypothesis with
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probabilityp;;. PSI-BLAST (20) uses Eq. [3] to calculate E-values.
The derivation through Eq. [2] confirms the PSSM in Eq. [3] as
the natural choice for evaluating individual sequences.

The assignment of an E-value to a subsequence with a particular
individual score is done as follows: consider the alignment sequence
containing the subsequence. Let 7 be the sequence length, and recall
that w is the window size. If AS; denotes the quantity in Eq. [2] if the
final letter in the window falls at position ¢ of the alignment sequence,
then AS* = max{AS; : = w, ..., n} is the maximum individual score
over all sequence positions z. We assigned an E-value to the actual
value AS* = As*, as follows. Staden’s method (21) yields P{AS;As*}
(independent of 7) under the null hypothesis of bases chosen indepen-
dently and randomly from the frequency distribution {p;}. The E-
value E = (n — w+ 1)P{AS;As*} is therefore the expected number
of sequence positions with an individual score exceeding As*. The
factor » — w + 1 in E is essentially a multiple test correction.

More recently, the A-GLAM package has been improved to
allow the identification of multiple instances of an element within a
target sequence (22). The optional ‘scanning step’ after Gibbs
sampling produces a PSSM given by Eq. [3]. The new scanning
step resembles an iterative PSI-BLAST search based on the PSSM.
First, it assigns an ‘individual score’ to each subsequence of appro-
priate length within the input sequences using the initial PSSM.
Second, it computes an E-value from each individual score to
assess the agreement between the corresponding subsequence
and the PSSM. Third, it permits subsequences with E-values fall-
ing below a threshold to contribute to the underlying PSSM,
which is then updated using the Bayesian calculus. A-GLAM
iterates its scanning step to convergence, at which point no new
subsequences contribute to the PSSM. After convergence,
A-GLAM reports predicted regulatory elements within each
sequence in the order of increasing E-values; users then have a
statistical evaluation of the predicted elements in a convenient
presentation. Thus, although the Gibbs sampling step in
A-GLAM finds at most one regulatory element per input
sequence, the scanning step can now rapidly locate further
instances of the element in each sequence.

1. The yeast cell-cycle-regulated expression data are obtained
from http://cellcycle-www .stanford.edu/ (see Note 1).

2. Pairwise Pearson correlation coefficient (PCC) values are cal-
culated using a subroutine implemented in the Perl program-
ming language (23) (see Note 2).

3. The co-expression network is constructed with all gene pairs
with a PCC greater or equal to 0.7 and is formatted according
to the simple interaction file (SIF) described in the Cytoscape
manual available at http: //www.cytoscape.org/ (see Note 3).
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4. The co-expression network can be loaded in Cytoscape, which
is an open-source software for integrating biomolecular inter-
action networks. Cytoscape is available for a variety of operat-
ing systems, including Windows, Linux, Unix, and Mac OS X.

3.2. Functional 1. Gene ontology (GO) annotations for yeast gene products
Similarity Network come from the Saccharomyces Genome Database (SGD) and
Construction were downloaded from http://www.geneontology.org/cgi-

bin/downloadGOGA.pl/gene_association.sgd.gz. The evi-
dence supporting such annotations is captured by evidence
codes, including TAS (Traceable Author Statement) and IEA
(Inferred from Electronic Annotation). While TAS refers to
peer-reviewed papers and indicates strong evidence, IEA
denotes automated predictions, not curated by experts, i.c.,
generally less reliable annotations. For this reason, IEA anno-
tations were excluded from this study.

2. Functional relationships between S. cerevisine genes were
assessed quantitatively using a semantic similarity method
(11) based on the gene ontology (GO). We first computed
semantic similarity among GO terms from the Biological Process
hierarchy using the Lin metric. This metric is based on infor-
mation content and defines term—term similarity, i.c., the
semantic similarity sim (c;, ¢;) between two terms ¢; and ¢; as

2 x max [log(p(c))]
Sim(ﬂi 5-) _ ceS(ciz) [4]
7 log(p(e) +log(p(c)))”

where §(c;,c;) represents the set of ancestor terms shared by
both ¢; and ¢;, ‘max’ represents the maximum operator, and
p(¢) is the probability of finding ¢ or any of its descendants in
the SGD database. It generates normalized values between 0
and 1. Gene—gene similarity results from the aggregation of
term—term similarity values between the annotation terms of
these two genes. In practice, given a pair of gene products, g,
and g, with sets of annotations A;and A, comprising 7 and
n terms, respectively, the gene-gene similarity, SIM(g;, g,), is
defined as the highest average (inter-set) similarity between
terms from A; and Aj:

1

SIM(g;,47) = s {Zmz?x[sim(pk, o)) + Zmﬁx[sim(ﬁk, £1,)]}, [5]
k ?

where sim(c;,c;) may be calculated using Eq. [1]. This aggre-
gation method (12) can be understood as a variant of the
Dice similarity.

3. The functional similarity network is constructed using
semantic similarity greater or equal to 0.7 and is formatted
according to the simple interaction file (SIF).
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4. Functional relationships in a group of genes can be further
explored in Cytoscape using the BINGO plug-in (24). Here
we have used the hypergeometric test to assess the statistical
significance (p < 0.05) and the Benjamini & Hochberg False
Discovery Rate (FDR) correction (25).

3.3. Intersection 1. The yeast co-expression and functional similarity networks are

Network Construction loaded in Cytoscape and the intersection network can be
obtained by using the Graph Merge plug-in, freely available
at the Cytoscape Web site. The nodes that are connected by
having similar expression profiles and GO annotations are
present in the intersection network (Fig. 1.1) (sec Note 4).

Q M LB 0P @O e B O 6 G GO0 OO 60 OO O
p Z@; AN D00
w e
5

6 60 6B 60 10 6 0 O 6© 60 0 660 6O 60 0 60V 60 &6 &9 &0

B 0 O 0 6 6 —6 6 o

Fig. 1.1. Yeast cell-cycle gene co-expression and GO intersection network. The intersection network topology is
shown for yeast genes, represented by nodes linked by one or more edges as described in the text. An edge represents
both co-expression and functional linkage between the nodes connected.
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2. The intersection network can be visualized using a variety of
layouts in Cytoscape. A circular layout of the intersection net-
work using the yFiles Layouts plug-in is depicted in Fig. 1.1.

3.4. Identification 1. The identification of dense gene clusters in the intersection
of Highly network is done using the MCODE Cytoscape plug-in (14)
Interconnected (see Note 5). The clusters identified share similar expression
Regions patterns and functions as described by GO (Fig. 1.2).

A

HHF1 —{HHT
—

T

HHF1
HHF2
HHT1
HHT2
HTA1
HTA2
HTB1
HTB2

2.0 1

1.0

0.0

Log(ratio)

—1.04

—2.041

T T T T T
0 50 100 150 200 250 300
Time (minutes)

Fig. 1.2. Core histone gene cluster in the intersection network. A. Highly connected cluster identified by MCODE
corresponds to eight core histone genes present in the yeast genome. The eight nodes are connected by 28 co-expression
and functional edges. B. Expression profiles of the core histone genes over the cell cycle. C. Over-represented GO terms in
the Biological Process category for the core histone genes. The statistical significance of each GO term is related to the
intensity of the colored circles (see Note 5).
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Gene @tology

Fig. 1.2. (continued)

3.5. Identification
of Proximal Promoter
Regions

3.6. Identification

of cis-Regulatory
Elements in Promoter
Regions

establishment and/or main @ ce of chromatin architecture

chromatin asse or disassembly

. The Saccharomyces Genome Database (SGD) maintains the

most current annotations of the yeast genome (see http://
www.yeastgenome.org/). The SGD FTP site contains the
DNA sequences annotated as intergenic regions in FASTA
format (available at ftp://genome-ftp.stanford.edu/pub/
yeast/sequence/genomic_sequence/intergenic/), indicating
the 5’ and 3’ flanking features. Additionally, a tab-delimited
file with the annotated features of the genome is necessary to
determine the orientation of the intergenic regions relative to
the genes (available at ftp://genome-ttp.stanford.edu/pub/
yeast/chromosomal_feature /). The two files can be used to
extract upstream intergenic regions (26) for the genes present
in the intersection network clusters (se¢ Note 6).

Construct FASTA files for each of the gene clusters identified
by MCODE.

Install the A-GLAM package (see Note 7).

. The A-GLAM package has a number of options that can be

used to adjust search parameters (see Note 8).
$ aglam

Usage summary: aglam [options] myseqs.fa
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Options:
—h help: print documentation

—n end each run after this many iterations without improve-
ment (10,000)

— r number of alignment runs (10)

—a minimum alignment width (3)

— b maximum alignment width (10,000)

—j examine only one strand

—1iword seed query ()

— finput file containing positions of the motifs ()

-z turn oft ZOOPS (force every sequence to participate in
the alignment)

— v print all alignments in full

— e turn oft sorting individual sequences in an alignment on
p-value

— q pretend residue abundances = 1 /4

—d frequency of width-adjusting moves (1)

— p pseudocount weight (1.5)

— u use uniform pseudocounts: each pseudocount = p/4
— tinitial temperature (0.9)

— ¢ cooling factor (1)

— m use modified Lam schedule (default = geometric
schedule)

—s seed for random number generator (1)

—w print progress information after each iteration

— I find multiple instances of motifs in each sequence

—k add instances of motifs that satisty the cutoft e-value (0)

— g number of iterations to be carried out in the post-processing
step (1,000)
Run A-GLAM to identify the regulatory elements present in
the gene clusters with similar expression patterns and GO
annotations (se¢ Note 9). A-GLAM correctly identifies an
experimentally characterized element known to regulate
core histone genes in yeast (27). The alignments produced
by A-GLAM can be represented by sequence logos (28, 29)
and the positional preferences of the elements can be eval-
uated by plotting the score against relative positions, nor-
malized by sequence length, in the promoter sequences

(Fig. 1.3).
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Fig. 1.3. Core histone regulatory element identified with A-GLAM. A. Sequence logo representation of the motif
obtained from the ungapped multiple sequence alignment identified by A-GLAM (see Note 9). B. Positional preference plot
for the elements identified by A-GLAM where the score in bits is plotted against the relative position of the element in the
upstream regions of the core histone genes.

4. Notes

1. The yeast cell cycle data from the Web site include the

experiments from Cho et al. (9) and Spellman et al. (10).
2. The following Perl code can be used to calculate the PCC:

my$r = correlation(\@{$values{$probel }}, \@{$values
{$probe2}});
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sub covariance {

}

my ($arraylref,$array2ref) = @_;

my ($i,$result);

for ($i = 0;8i < @Sarraylref;$i++) {$result +=$arrayl
ref->[ $i] *Sarray2ref->[$i];

J

$result /= @$arraylref;

$result -= mean($arraylref) * mean($array2ref);

sub correlation {

my ($arraylref,$array2ref) = @_;

my ($suml,$sum?2);

my ($suml_squared, $sum2_squared);

foreach (@$arraylref) {$suml +=$_;$suml_squared
+=$§_**2}

foreach (@$array2ref) {$sum2 +=$_;$sum2_squared
+=$_**2}

return (@$arraylref ** 2) * covariance($arraylref,
$array2ref) /sqre(((@$arraylref *$suml_squared)
($suml ** 2)) *((@Sarraylref *$sum2_squared) -
(Ssum2 ** 2)));

sub mean {
my ($arrayref) = @_;
my$result;
foreach (@Sarrayref) {Sresult +=$_ }
return$result / @$arrayref;

3. The simple interaction file (SIF or .sif format) consists of lines
where each node, representing a protein, is connected by an
edge to a different protein in the network. Lines from the
simple interaction file from the co-expression network:
RPLI12A pp THR1

RPLI2A pp TIF2
RPLI12A pp TIF1
RPLI12A pp GUKI1
RPL12A pp URA5
RPLI12A pp RPL1B
RPLI12A pp SSH1
RPLI2A pp SNU13
RPL12A pp RPL23B
SHUI1 pp DON1
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Two nodes are connected by a relationship type that in this
case is pp. The nodes and their relationships are delimited by a
space or a tab (see the Cytoscape manual for more detailed
information).

4. Two or more networks can be used to calculate their
intersection as needed to select for connections that meet
certain criteria. The researcher can overlay protein—protein
interactions, co-expression and functional networks to
identify the protein complexes created under specific
experimental conditions.

5. The MCODE plug-in ranks the clusters according to the
average number of connections per protein in the complex
(Score). The top five clusters identified by MCODE in the
intersection network are shown below:

Cluster Score Proteins Interactions
1 6.6 15 99
2 3.5 8 28
3 2.267 15 34
4 2 5 10
5 2 5 10

The BiNGO plug-in can be used to determine the GO terms
statistically over-represented in a group of genes. Here we
show the results for cluster 2:

Selected statistical test : Hypergeometric test

Selected correction : Benjamini & Hochberg False Dis-
covery Rate (FDR) correction

Selected significance level : 0.05

Testing option : Test cluster versus complete annotation

The selected cluster :
HHT1 HHF1 HTA1 HHT2 HHF2 HTA2 HTB1 HTB2

Number of genes selected : 8
Total number of genes in annotation : 5932
6. There are a number of Web sites that facilitate the extraction
of promoter sequences. A service for the extraction of human,
mouse, and rat promoters is freely available at http://bio
wulf.bu.edu/zlab/promoser,/

7. The A-GLAM package is currently available in source
code and binary forms for the Linux operating system
(see ftp://ftp.ncbi.nih.gov/pub/spouge/papers/archive/
AGLAM/).
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Corrected

GOID  P-value P-value Description

6333 4.9168E-15 1.2292E-13 Chromatin assembly
or disassembly

6325 2.2510E-12 1.8758E-11 Establishment and /or
maintenance of
chromatin
architecture

6323 2.2510E-12 1.8758E-11 DNA packaging

7001 2.0415E-10 1.2759E-9 Chromosome
organization and
biogenesis (sensu
Eukaryota)

51276  2.5897E-10 1.2949E-9 Chromosome
organization and
biogenesis

6259 5.9413E-9 2.4756E-8 DNA metabolism

6996 6.9565E-7 2.4845E-6 Organelle
organization and
biogenesis

Installation of the Linux binary: Get the executable from the
FTP site and set execute permissions.
$chmod +x aglam

Installation from source: Unpack the glam archive and com-
pile A-GLAM.

$tar —zxvf aglam.tar.gz

$cd aglam

$make aglam

. Possible scenarios and options to modify A-GLAM’s behavior.

$aglam <myseqs.fa>

This command simply uses the standard Gibbs sampling pro-
cedure to find sequence motifs in “myseqs.fa”.
$aglam <myseqs.fa> -n 20000 -a 5 -b 15 -j

This tells the program to search only the given strand of the
sequences to find motifs of length between 5 and 15 bp. The
flag » specifies the number of iterations performed in each of
the ten runs. Low values of # are adequate when the problem
size is small, i.e., when the sequences are short and more
importantly there are few of them, but high values of # are
needed for large problems. In addition, smaller values of 7 are
sufficient when there is a strong alignment to be found, but
larger values are necessary when there is not, e.g., for finding
the optimal alignment of random sequences. You will have to
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choose 7 on a case-by-case basis. This parameter also controls
the tradeoft between speed and accuracy.

Saglam <myseqgs.fa> -i TATA

This important option sets the program to run in a “seed”-
oriented mode. The above command restricts the search to
sequences that are TATA-like. Unlike the procedure followed
in the standard Gibbs sampling algorithm, however, A-GLAM
continues to align one exact copy of the “seed” in all “seed
sequences”. Therefore, A-GLAM uses the seed sequences to
direct its search in the remaining non-seed “target sequences”.
Using this option leads to the global optimum quickly.

$aglam <mysegs.fa> -f <positions.dat>

The above command uses an extra option that allows
A-GLAM to take a set of positions from an input file “posi-
tions.dat”. Like with the “-” flag, this option provides “seeds”
tor the A-GLAM alignment. Using this command restricts
the Gibbs sampling step to aligning the original list of win-
dows specitied by the positions in the file. The seed sequences
then direct the search in the remaining non-seed sequences.

$aglam <mysegs.fa> -1 -k 0.05 —g 2000

Usable only with version 1.1. This tells the program to find
multiple motifinstances in each input sequence, via the scan-
ning step (described above). Those instances that receive an
E-value less than 0.05 are included in the PSSM. The search
for multiple motifs is carried on until either (a) no new motifs
are present or (b) the user-specified number of iterations (in
this case, it is 2,000) is attained, whichever comes first.

9. A-GLAM uses sequences in FASTA format as input. Cluster
number 2, identified by MCODE, is composed of eight genes
linked by 28 co-expression and GO connections. Interest-
ingly, the intergenic regions of the same cluster are shared
between the genes in the cluster:

>B:235796-236494, Chr 2 from 235796-236494,
between YBLOO3C and YBLOO2W
TATATATTAAATTTGCTCTTGTTCTGTACTTTCCTAATTCTTATGTA
AAAAGACAAGAAT
TTATGATACTATTTAATAACAAAAAACTACCTAAGAAAAGCATCATGCAG
TCGAAATTGA
AATCGAAAAGTAAAACTTTAACGGAACATGTTTGAAATTCTAAGAAAGC
ATACATCTTCA
TCCCTTATATATAGAGTTATGTTTGATATTAGTAGTCATGTTGTAATCT
CTGGCCTAAGT
ATACGTAACGAAAATGGTAGCACGTCGCGTTTATGGCCCCCAGGTTAAT
GTGTTCTCTGA
AATTCGCATCACTTTGAGAAATAATGGGAACACCTTACGCGTGAGCTGT
GCCCACCGCTT
CGCCTAATAAAGCGGTGTTCTCAAAATTTCTCCCCGTTTTCAGGATCAC
GAGCGCCATCT
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AGTTCTGGTAAAATCGCGCTTACAAGAACAAAGAAAAGAAACATCGCGT
AATGCAACAGT
GAGACACTTGCCGTCATATATAAGGTTTTGGATCAGTAACCGTTATTTG
AGCATAACACA
GGTTTTTAAATATATTATTATATATCATGGTATATGTGTAAAATTTTTT
TGCTGACTGGT
TTTGTTTATTTATTTAGCTTTTTAAAAATTTTACTTTCTTCTTGTTAAT
TTTTTCTGATT
GCTCTATACTCAAACCAACAACAACTTACTCTACAACTA
>D:914709-915525, Chr 4 from 914709-915525, between
YDR224C and YDR225W
TGTATGTGTGTATGGTTTATTTGTGGTTTGACTTGTCTATATAGGATAA
ATTTAATATAA
CAATAATCGAAAATGCGGAAAGAGAAACGTCTTTAATAAATCTGACCAT
CTGAGATGATC
AAATCATGTTGTTTATATACATCAAGAAAACAGAGATGCCCCTTTCTTA
CCAATCGTTAC
AAGATAACCAACCAAGGTAGTATTTGCCACTACTAAGGCCAATTCTCTT
GATTTTAAATC
CATCGTTCTCATTTTTTCGCGGAAGAAAGGGTGCAACGCGCGAAAAAGT
GAGAACAGCCT
TCCCTTTCGGGCGACATTGAGCGTCTAACCATAGTTAACGACCCAACCG
CGTTTTCTTCA
AATTTGAACTCGCCGAGCTCACAAATAATTCATTAGCGCTGTTCCAAAA
TTTTCGCCTCA

CTGTGCGAAGCTATTGGAATGGAGTG
TATTTGGTGGCTCAAAAAAAGAGCACAATAGTTA
ACTCGTCGTTGTTGAAGAAACGCCCGTAGAGATATGTGGTTTCTCATGC
TGTTATTTGTT
ATTGCCCACTTTGTTGATTTCAAAATCTTTTCTCACCCCCTTCCCCGTT
CACGAAGCCAG
CCAGTGGATCGTAAATACTAGCAATAAGTCTTGACCTAAAAAATATATA
AATAAGACTCC
TAATCAGCTTGTAGATTTTCTGGTCTTGTTGAACCATCATCTATTTACT
TCCAATCTGTA
CTTCTCTTCTTGATACTACATCATCATACGGATTTGGTTATTTCTCAGT
GAATAAACAAC

TTCAAAACAAACAAATTTCATACATATAAAATATAAA
>N:576052-576727, Chr 14 from 576052-576727, between
YNLO31C and YNLO30W
TGTGGAGTGTTTGCTTGGATCCTTTAGTAAAAGGGGAAGAACAGTTGGAA
GGGCCAAAGT
GGAAGTCACAAAACAGTGGTCCTATATAAAAGAACAAGAAAAAGATTATT
TATATACAAC
TGCGGTCACAAGAAGCAACGCGAGAGAGCACAACACGCTGTTATCACGCA
AACTATGTTT
TGACACCGAGCCATAGCCGTGATTGTGCGTCACATTGGGCGATAATGAAC
GCTAAATGAC
CAACTCCCATCCGTAGGAGCCCCTTAGGGCGTGCCAATAGTTTCACGCGC
TTAATGCGAA
GTGCTCGGAACGGACAACTGTGGTCGTTTGGCACCGGGAAAGTGGTACTA
GACCGAGAGT
TTCGCATTTGTATGGCAGGACGTTCTGGGAGCTTCGCGTCTCAAGCTTTT
TCGGGCGCGA
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AATGCAGACCAGACCAGAACAAAACAACTGACAAGAAGGCGTTTAATTTA
ATATGTTGTT
CACTCGCGCCTGGGCTGTTGTTATTCGGCTAGATACATACGTGTTTGTGC
GTATGTAGTT
ATATCATATATAAGTATATTAGGATGAGGCGGTGAAAGAGATTTTTTTT
TTTTCGCTTAA
TTTATTCTTTTCTCTATCTTTTTTCCTACATCTTGTTCAAAAGAGTAGC
AAAAACAACAA

TCAATACAATAAAATA

>B:255683-256328, Chr 2 from 255683-256328, between
YBRO0O9SC and YBRO10W
ATTTTACTATATTATATTTGTTGCTTGTTTTTGTTTGTTGCTTTAGTAC
TATAGAGTACA
ATAATGCGACGGAAACCATCATATAGAAAAAATATCTCGGTATTTATAG
GAAAAAGAATT
AGACCTTTTCCACAACCAATTTATCCATCAAATTGGTCTTTACCCAATG
AATGGGGAAGG
GGGGGTGGCAATTTACCACCGTATTCGCGGGCATTTGCTAAAGTAAACA
ACTTCGGTTTT
TACCACTAACCATTATGGGGAGAAGCGCTCGGAACAGTTTTACTATGTG
AAGATGCGAAG
TTTTCAGAACGCGGTTTCCAAATTCGGCGGGGAGATACAAAAAAGATTT
TTGCTCTCGTT
CTCACATTTTCGCATTGTCCCATACATTATCGTTCTCACAATTTCTCAC
ATTTCCTTGCT
CTGCACCTTTGCGATCCTGGCCGTAATATCTCTCCTTGACTTTTAGCGT
GGAAGATAACG
AAATGCCCGGGCGATTTTTCTTTTTGGTACCCTCCACGGCTCCTTGTTG
AAATACATATA
TAAAAGACTGTGTATTCTTCGGGATACATCTCTTTCCTCAACCTTTTAT
ATTCTTTCTTT
CTAGTTAATAAGAAAAACATCTAACATAAATATATAAACGCAAACA

A-GLAM has a number of useful command line options that
can be adjusted to improve ab initio motif finding; in this
example we have restricted the search to motifs no larger
than 20 bp.

$aglam -b 20 -1 02.fa

A-GLAM: Anchored Gapless Local Alignment of

Multiple
Sequences Compiled on Jun 2 2006
Runl... 11724 iterations
Run 2... 10879 iterations
Run 3... 10878 iterations
Run 4... 10336 iterations
Run 5... 10181 iterations
Run 6... 10637 iterations
Run 7... 10116 iterations
Run 8... 11534 iterations

Run 9... 10097 iterations
Run 10... 10239 iterations
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The sequence file was[ 02.fa]

Reading the file took[ 0] secs
Sequences in file[ 4]

Maximum possible alignment width[ 1292]
Score[ 243.4] bits

Motif Width[ 20]

Runs [ 10]

Best possible alignment:

>B:235796-236494, Chr 2 from 235796-236494, between
YBLOO3C and YBLOO2W

365 AGGCGAAGCGGTGGGCACAG 346 — (21.29360)
(2.820982e-08)

394 GGGAGAAATTTTGAGAACAC 375 — (13.97930)
(5.205043e-04)

309 ATGCGAATTTCAGAGAACAC 290 — (11.12770)
(5.771870e-03)

314 TTGAGAAATAATGGGAACAC 333 + (9.034960)
(2.714569e-02)

>D:914709-915525, Chr 4 from 914709-915525, between
YDR224C and YDR225W

423 GTGCGAAGCTATTGGAATGG 442 + (18.55810)
(2.256236e-06)

278 GCGCGAAAAAGTGAGAACAG 297 + (13.90430)
(6.495526e-04)

418 AGGCGAAAATTTTGGAACAG 399 — (12.51460)
(2.007017e-03)

262 CCGCGAAAAAATGAGAACGA 243 — (9.499530)
(2.299132e-02)

>N:576052-576727, Chr 14 from 576052-576727,
between YNLO31C and YNLO30W

294 ATGCGAAGTGCTCGGAACGG 313 + (21.65330)
(1.526033e-08)

367 ATGCGAAACTCTCGGTCTAG 348 — (11.95760)
(2.781407e-03)

399 ACGCGAAGCTCCCAGAACGT 380 — (11.25120)
(5.253971e-03)

288 GCGTGARACTATTGGCACGC 269 — (8.853600)
(3.961768e-02)

>B:255683-256328, Chr 2 from 255683-256328, between
YBRO09C and YBRO10W

258 GGGAGAAGCGCTCGGAACAG 277 + (22.13350)
(6.281785e-09)

293 ATGCGAAGTTTTCAGAACGC 312 + (11.81510)
(3.041439e-03)

409 GTGAGAAATTGTGAGAACGA 390 — (8.852760)
(3.780865e-02)

375 ATGCGARAAATGTGAGAACGA 356 — (8.564750)
(4.774790e-02)
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! 16 sequences in alignment

! Residue abundances:Pseudocounts
!'A=0.312544:0.468816C=0.187456:0.281184
1'G=0.187456:0.281184T=0.312544:0.468816

! Total Time to find best alignment[ 15.87] secs
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Chapter 13

Promoter Analysis: Gene Regulatory Motif Identification
with A-GLAM

Leonardo Mariiio-Ramirez, Kannan Tharakaraman, John L. Spouge,
and David Landsman

Abstract

Reliable detection of cis-regulatory elements in promoter regions is a difficult and unsolved problem in
computational biology. The intricacy of transcriptional regulation in higher eukaryotes, primarily in
metazoans, could be a major driving force of organismal complexity. Eukaryotic genome annotations
have improved greatly due to large-scale characterization of full-length cDNAs, transcriptional start sites
(TSSs), and comparative genomics. Regulatory elements are identified in promoter regions using a variety
of enumerative or alignment-based methods. Here we present a survey of recent computational methods
for eukaryotic promoter analysis and describe the use of an alignment-based method implemented in the
A-GLAM program.

Key Words: Promoter regions, transcription factor binding sites, enumerative methods, promoter
comparison.

1. Introduction

The establishment and maintenance of temporal and spatial pat-
terns of gene expression are achieved primarily by transcription
regulation. Additionally, the precise control of timing and location
of gene expression depends on the interaction between transcrip-
tion factors and cis-acting sequence elements in promoter regions.
Transcription factors can induce or repress gene expression upon
binding of their cognate sequence element in the DNA. The
discovery and categorization of the entire collection of transcrip-
tion factor-binding sites (TFBSs) of an organism are among the
greatest challenges in computational biology (1). Large-scale
efforts involving genome mapping and identification of TFBS in

David Posada (ed.), Bioinformatics for DNA Sequence Analysis, Methods in Molecular Biology 537
© Humana Press, a part of Springer Science+Business Media, LLC 2009
DOI 10.1007/978-1-59745-251-9_13

263



264

Marino-Ramirez et al.

lower eukaryotes, such as the yeast Saccharomyces cevevisine, have
been successful (2). In contrast, similar efforts in vertebrates have
proven difficult due to the presence of repetitive elements and an
increased regulatory complexity (3-5).

The accurate prediction and identification of regulatory ele-
ments in higher eukaryotes remains a challenge for computational
biology, despite recent progress in the development or improve-
ment of different algorithms (6-19). Different strategies for motif
recognition have been benchmarked to compare their perfor-
mance (20). Typically, computational methods for identifying
cis-regulatory elements in promoter sequences fall into two classes,
enumerative and alignment techniques (21). We have developed
algorithms that use enumerative approaches to identify cis-regula-
tory elements statistically significant over-represented in promoter
regions (22). Subsequently, we developed an algorithm that com-
bines both enumeration and alignment techniques to identify
statistically significant cis-regulatory elements positionally clus-
tered relative to a specific genomic landmark (23,24).

Promoter identification is the first step in the computational
analysis that leads to the prediction of regulatory elements. In
lower Eukaryotes this is a rather simple problem due to a relative
high gene density with respect to the genome size. The yeast
Saccharomyces cerevisine has ~70% of its genome coding for pro-
teins and its intergenic regions are fairly short (~440 bp in length)
(25). In contrast, the human genome has a relative low gene
density, with ~3% of the genome coding for proteins (26); this
poses significant challenges for the identification of both the pro-
moter and its regulatory elements. Despite the complexity of gene
expression regulation in higher Eukaryotes (27), we now have a
number of experimental and computational resources that can
assist in the delineation of mammalian promoter regions. The
experimental resources include full-length ¢cDNA collections
(28) and transcriptional start sites (TSS) (29). Additionally, com-
plementary computational resources include the database of tran-
scriptional start sites (DBTSS) (30) and promoter identification
services (31-33). Many regulatory elements are located in the
proximal promoter region (PPR) located a few hundred bases
upstream the TSS (22) and the PPR can be generally defined by
its low transposable element content (34).

The computational methods for the prediction and identifica-
tion of transcription factor binding sites can be divided in two
broad categories: algorithms for de novo identification and algo-
rithms that recognize elements using prior knowledge of the ele-
ments. Enumerative and alignment methods form part of the de
novo algorithms. Enumerative algorithms use exhaustive methods
to examine exact DNA words of a fixed length to rank them
according to a specific function that determine over-representa-
tion relative to a background distribution. An enumerative
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method that estimates p-values with the standard normal approx-
imation associated with z-scores (22) has been successfully applied
for the identification of regulatory elements in higher Eukaryotes
(35). Other enumerative methods include Weeder (16, 17), oli-
gonucleotide frequency analysis (36), and QuickScore (14).

Alignment methods aim to identify functional elements by a
multiple local alignment of all sequences of interest. The most
popular algorithms in this category use an optimization procedure
based in probabilistic sequence models to find statistically signifi-
cant motifs; these include Gibbs sampling (37) or expectation
maximization (11). Approaches that use a combination of enu-
merative and alignment methods have shown a significant
improvement in the identification of regulatory elements in pro-
moter sequences (23, 24).

Algorithms that use prior knowledge of known motifs often
use position frequency matrices (PFMs) that contain the number
of observed nucleotides at each position (38). Methods that assess
statistical over-representation of known motifs in a set of
sequences have been particularly successful (9). Additionally,
motif scores determined by over-representation can be used as a
proxy to perform promoter comparisons (39).

2. Program Usage

2.1. The A-GLAM
Algorithm

The A-GLAM software package uses a Gibbs sampling algorithm
to identify functional motifs in a set of sequences. Gibbs sampling,
also known as successive substitution sampling, is a well-known
Markov-chain Monte Carlo procedure for discovering sequence
motifs (37). In brief, A-GLAM takes a set of sequences in FASTA
format as input. The Gibbs sampling step in A-GLAM uses simu-
lated annealing to maximize an “overall score,” corresponding to a
Bayesian marginal log-odds score. The overall score is given by

® (a—1)! (cj+aj—1)!
T ;(logzm+%{logz ﬁ] - fz‘jlogzp]})
(1)

In equation (1), 7! = m(m — 1) ...1 denotes a factorial; a;, the
pseudo-counts for nucleic acid j in each position;
a = m + @y + a3z + a4, the total pseudo-counts in each position;
cij, the count of nucleic acid j in position 7 and
¢ =ci + cia + ¢i3 + cia, the total number of aligned windows,
which is independent of the position 7. The underlying principle

behind the overall score s in A-GLAM is explained in detail else-
where (23).
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The annealing maximization is initialized when A-GLAM places
a single window of arbitrary size and position at every sequence,
generating a gapless multiple alignment of the windowed subse-
quences. The program then proceeds through a series of iterations;
on each iteration step, A-GLAM proposes a set of adjustments to
the alignment. The proposal step is either a repositioning step or a
resizing step. In a repositioning step, a single sequence is chosen
uniformly at random from the alignment; and the set of adjustments
include all possible positions in the sequence where the alignment
window would fit without overhanging the ends of the sequence. In
a resizing step, either the right or the left end of the alignment
window is selected; and the set of proposed adjustments includes
expanding or contracting the corresponding end of all alignment
windows by one position at a time. Each adjustment leads to a
different value of the overall score s. Then, A-GLAM accepts one
of the adjustments randomly, with probability proportional to
exp(s/T). A-GLAM may even exclude a sequence if doing so
would improve alignment quality. The temperature 7T is gradually
lowered to T' = 0, with the intent of finding the gapless multiple
alignments of the windows maximizing s. The maximization impli-
citly determines the final window size. The randomness in the
algorithm helps it avoid local maxima and find the global maximum
of 5. However, due to the stochastic nature of the procedure,
finding the optimum alignment it is not guaranteed.

In the default mode, A-GLAM repeats the annealing maximi-
zation procedure ten times from different starting points (ten
runs). The rationale behind this is that if several of the runs con-
verge to the same best alignment, the user has increased confi-
dence that it is indeed the optimum alignment.

The individual score and its E-value in A-GLAM: The Gibbs
sampling step produces an alignment whose overall score s is given
by equation (1). Consider a window of length w that is about to be
added to A-GLAM’s alignment. Let 6;(7) equal 1 if the window
has nucleic acid j in position Z, and 0 otherwise. The addition of
the new window changes the overall score by

As = izw;%):@(j){logz KCZZ;LFZQ /P]]} (2)

The score change corresponds to scoring the new window
according to a position specific scoring matrix (PSSM) that assigns
the “individual score”

5i(7) = log, [(E] h ﬂj) /Pj] (3)

c+a

to nucleic acid 7 in position 7. Equation (3) represents a log-odds
score for nucleic acid 5 in position 7 under an alternative hypothesis
with probability (c; + ;)/(c+ #) and a null hypothesis with
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probability p;;. PSI-BLAST (40) uses equation (3) to calculate E-
values. The derivation through equation (2) confirms the PSSM in
equation (3) as the natural choice for evaluating individual
sequences.

The assignment of an E-value to a subsequence with a parti-
cular individual score is done as follows. Consider the alignment
sequence containing the subsequence. Let # be the sequence
length, and recall that w is the window size. If AS; denotes
the quantity in equation (2) if the final letter in the window falls
at  position ¢ of the alignment sequence, then
AS* = max{AS; : i =w,...,n} is the maximum individual score
over all sequence positions 7. We assigned an E-value to the actual
value AS* = As*, as follows. Staden’s method (41) vyields
P{AS; > As*} (independent of 7) under the null hypothesis of
bases chosen independently and randomly from the frequency
distribution {p;}. The E-value E = (n — w + 1)P{AS; > As*} is
therefore the expected number of sequence positions with an
individual score exceeding As*. The factor » —w+1 in E is
essentially a multiple test correction.

More recently, the A-GLAM package has been improved to
allow the identification of multiple instances of an element within a
target sequence (24). The optional “scanning step” after Gibbs
sampling produces a PSSM given by equation (3). The new scan-
ning step resembles an iterative PSI-BLAST search based on the
PSSM (Fig. 13.1). First, it assigns an “individual score” to each
subsequence of appropriate length within the input sequences
using the initial PSSM. Second, it computes an E-value from
cach individual score to assess the agreement between the corre-
sponding subsequence and the PSSM. Third, it permits subse-
quences with E-values falling below a threshold to contribute to
the underlying PSSM, which is then updated using the Bayesian
calculus. A-GLAM iterates its scanning step to convergence, at
which point no new subsequences contribute to the PSSM. After
convergence, A-GLAM reports predicted regulatory elements
within each sequence in order of increasing E-values; users then
have a statistical evaluation of the predicted elements in a conve-
nient presentation. Thus, although the Gibbs sampling step in A-
GLAM finds at most one regulatory element per input sequence,
the scanning step can now rapidly locate further instances of the
element in each sequence.

The minimum hardware requirements are a personal computer
with at least 512 MB of random access memory (RAM) connected
to the Internet as well as access to a Linux or UNIX workstation
where A-GLAM will be installed. The connectivity between the
personal computer and the workstation is typically established by
the Secure Shell (SSH) protocol, a widely used open source of the
protocol available at http://www.openssh.org/.
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2.3. Software

Fig. 13.1. Strategy to find multiple motif instances in A-GLAM. The Gibbs sampling
identifies up to one motif per sequence (indicated by a black box and an arrowhead). The
sequences are then used to construct a position specific score matrix (PSSM) that is used
iteratively to discover multiple motif instances per sequence (indicated by dashed
boxes).

A modern version of the Perl programming language installed on
the Linux or UNIX workstation freely available at http://
www.perl.com/ will allow the user to parse A-GLAM’s output.
The A-GLAM package (23) freely available at http://ftp.ncbi.nih.-
gov,/pub/spouge/papers/archive /AGLAM / is currently available
as source code and binary packages for the Linux operating system.

Installation of the Linux binary: get the executable from the
FTP site and set execute permissions.

Schmod +x aglam

Installation from source: unpack the glam archive in a con-
venient location and compile A-GLAM.
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Star -zxvf aglam.tar.gz
$cd aglam
$make aglam

Then you could place the binary in your path: $HOME /bin
or /usr/local /bin/.

A-GLAM accepts input data in FASTA format containing the
sequences to be analyzed. The FASTA format consists of one or
more sequences identified by a line beginning with the “>” char-
acter that should include a unique identifier and a short description
about the sequence. The next line(s) should contain the sequence
string. A-GLAM expects the standard nucleic acid IUPAC code.

Some important options to modify A-GLAM’s behavior are
described below:

$aglam <fasta file.fa>

This command simply uses the standard Gibbs sampling pro-
cedure to find sequence motifs in “fasta_file.fa.”

$aglam <fasta file.fa> -n 30000 -a 8 -b 16 -j

These sets of commands instruct the program to search only the
given strand of the sequences to find motifs of length between 8 and
16 bp. The flag » specifies the number of iterations performed in each
of the ten runs. Low values of 7 are adequate when the problem size is
small, i.e., when the sequences are short and more importantly there
are few of them, but high values of 7 are needed for large problems.
In addition, smaller values of 7 are sufficient when there is a strong
alignment to be found, but larger values are necessary when there is
no strong alignment, e.g., for finding the optimal alignment of ran-
dom sequences. You will have to choose 7 on a case-by-case basis.
This parameter also controls the tradeoft between speed and accuracy.

$aglam <fasta file.fa> -i TATA

This important option sets the program to run in a “seed”
oriented mode. The above command restricts the search to
sequences that are TATA-like. Unlike the procedure followed in
the standard Gibbs sampling algorithm, however, A-GLAM con-
tinues to align one exact copy of the “seed” in all “seed
sequences.” Therefore, A-GLAM uses the seed sequences to direct
its search in the remaining non-seed “target sequences.” Using
this option leads to the global optimum quickly.
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$aglam <fasta file.fa> -1 -k 0.05 —g 2000

Usable only with version 1.1. This set of commands instructs
the program to find multiple motif instances in each input
sequence via the scanning step (described above). Those instances
that receive an E-value less than 0.05 are included in the PSSM.
The search for multiple motifs is carried on until either (a) no new
motifs are present or (b) the user-specified number of iterations (in
this case, it is 2000) is attained, whichever comes first.

3. Example

3.1. Promoter
Identification

3.2. Identification of
cis-Regulatory
Elements in Promoter
Regions

The A-GLAM package includes documentation and test datasets.
Here, we will use a dataset obtained from a large-scale chromatin
immunoprecipitation in Saccharomyces cerevisine (2), combined
with DNA microarrays (42) to detect interactions between tran-
scription factors and a DNA sequence in vivo. The DNA sequence
binding specificity of various transcription factors can then be
inferred using A-GLAM on intergenic regions bound by a parti-
cular transcription factor. Here, we will use the intergenic regions
bound by Snt2p (see Note 1).

The Saccharomyces Genome Database (SGD) maintains the most
current annotations of the yeast genome (see http://www.yeast-
genome.org/). The SGD FTP site contains the DNA sequences
annotated as intergenic regions in FASTA format (available at
ttp:/ /genome-ttp.stanford.edu/pub /yeast /sequence /genomic_
sequence/intergenic/), indicating the 5’ and 3’ flanking features.
Additionally, a tab delimited file with the annotated features of
the genome is necessary to determine the orientation of the
intergenic regions relative to the genes (available at ftp://gen-
ome-ftp.stanford.edu/pub /yeast/chromosomal_feature/). The
two files can be used to extract upstream intergenic regions.
Additionally, there are a number of Web services that facilitate
the identification of proximal promoter in mammalian genomes;
these include TRED (32), EPD (33), and Promoser (31).

Construct FASTA files for each of the promoters to be included in
the analysis. The Perl programming language can be used in con-
junction with BioPerl libraries (freely available at http://
www.bioperl.org/) to generate files in FASTA format. In this
particular example all relevant files can be found on the Fraenkel
Web site at http: //fraenkel.mit.edu//Harbison /release_v24.
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The A-GLAM package has a number of options that can be
used to adjust search parameters.

Saglam

Usage summary: aglam [ options] myseqgs.fa
Options:

-h help: print documentation

-n end each run after this many iterations
without improvement (10000)

-r number of alignment runs (10)

-a minimum alignment width (3)

-b maximum alignment width (10000)

-3 examine only one strand

-1 word seed query ()

-f input file containing positions of the
motifs ()

-z turn off ZOOPS (force every sequence to
participate in the alignment)

-v print all alignments in full

-e turn off sorting individual sequences in an
alignment on p-value

-q pretend residue abundances = 1/4

-d frequency of width-adjusting moves (1)

-p pseudocount weight (1.5)

-u use uniform pseudocounts: each pseudocount =
p/4

-t initial temperature (0.9)

-c cooling factor (1)

-m use modified Lam schedule (default = geo-
metric schedule)

-s seed for random number generator (1)

-w print progress information after each
iteration

-1 find multiple instances of motifs in each
sequence

-k add instances of motifs that satisfy the
cutoff e-value (0)

-g number of iterations to be carried out in
the post-processing step (1000)

Run A-GLAM to identity regulatory elements present in the
promoter regions bound by Snt2p. A-GLAM uses sequences in
FASTA format as input. There are 46 intergenic regions bound
by Snt2p that were identified by ChIP-chip in a large-scale study
(2). These regions vary in length from 71 to 1,512 bp with an
average of 398 bp. A-GLAM is able to identify statistically sig-
nificant motifs for Snt2p and rank them according to their
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individual p-values. A-GLAM has a number of useful command
line options that can be adjusted to improve ab initio motif
finding; in this example we have restricted the search to motifs
no larger than 20 bp and instructed the program to find multiple
instances of motifs in each sequence using a strategy that resem-
bles an iterative PSI-BLAST search based on the PSSM con-
structed by the Gibbs sampling step (24). The output of the A-
GLAM program is presented in Fig. 13.2. In the default mode,
A-GLAM repeats the annealing maximization procedure ten
times from different starting points (ten runs). The rationale
behind this is that if several of the runs converge to the same
best alignment, the user has increased confidence that it is indeed
the optimum alignment. The user can adjust the number of
alignment runs by setting the —r flag (see Note 2). The number
of iterations can also be adjusted for large datasets. The default
value is set at 10,000 without alignment improvement, using the
-n flag the number of iterations can be increased to extend
coverage of the sequence space.

A-GLAM identifies candidate sequences that could serve as
Snt2p binding sites. The candidate sequences found by A-GLAM
are in agreement with previous findings where other motif finding
algorithms were used (2) and Fig. 13.3. Additional examples
where we have successfully used A-GLAM to complement experi-
mental efforts for the identification of regulatory elements include
motifs for Spt10p in yeast and the CREB-binding protein (34, 35).
In this particular example, the program constructs a PSSM using
the sequences from the optimal alignment to find multiple
instances (se¢e Note 3). The multiple alignments produced by
A-GLAM can be represented graphically by sequence logos
(43, 44) (see Note 4).

4. Notes

1. The primary data can be obtained from the Fraenkel Labora-
tory Web site at http: //fraenkel.mit.edu/Harbison /.

2. The number of alignment runs is 10 by default; however, the
user can increase the number of runs to boost the confidence
of the results. The user has the option —v to print all align-
ments generated in each run; by default A-GLAM will report
only the highest scoring alignment.

3. Alternatively, the user could run A-GLAM without the -1
flag and construct a position frequency matrix that in turn
could be used to scan the target sequences for additional
instances of the motif. The TFBS Perl modules for
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$ aglam -b 20 -1 SNT2_YPD.fsa

A-GLAM: Anchored Gapless Local Alignment of Multiple Sequences
Compiled on Feb 9 2008
aglam -1 SNT2_YPD.fsa

Run 1.. 25340 iterations

Run 2.. 26770 iterations

Run 3.. 22597 iterations

Run 4.. 17786 iterations

Run 5.. 23816 iterations

Run 6. . 42556 iterations

Run 7.. 19556 iterations

Run 8.. 22526 iterations

Run 9... 23310 iterations

Run 10... 21531 iterations

! The sequence file was [SNT2_YPD.fsa]
! Reading the file took [0] secs

! Sequences in file [46]

! Maximum possible alignment width [142]
! Score [400] bits

! Motif Width [12]

! Runs [10]

Best possible alignment:

>1YNL182C 6.2046e-10 202 ATGGCGCTATCA 213+ (10.24060) (1.714353e-02)

>iYBL075C 7.9181le-10 278 GCGGCGCTATCA 267 - (12.62630) (3.136227e-04)

>i1YIL160C 1.0190e-09 211 ACGGCGCTACCA 222+ (14.16730) (2.230312e-05)
208 AAGGCGCTATCA 197 - (10.97000) (4.259169e-03)

>1YPR183W 1.6110e-09 237 GCGGCGCTACCA 248 + (14.39810) (8.284745e-06)

>1YCR090C-1 2.2463e-09 575 ACGGCGCTATCA 564 - (12.39550) (1.190739e-03)

>1YALO39C-0 5.6844e-09 281 GCGGCGCTACCA 292 + (14.39810) (2.092311e-05)

>iYPR157W 1.0834e-08 343 GTGGCGCTATCA 332 - (10.47150) (1.119393e-02)

>iYOL117W 1.2728e-08 absent

>1YLR149C 1.4205e-08 252 ATGGCGCTACCA 263  + (12.01250) (1.704126e-03)

>1YJL093C 3.7648e-08 279 GCGGCGCTATCA 268 - (12.62630) (6.283269e-04)

>1YBR143C 2.6501e-07 202 ACGGCGCTATCA 213+ (12.39550) (1.581019e-03)

>1YLR176C 1.6035e-06 221 GTGGCGCTACCA 232+ (12.24330) (1.517043e-03)

>1YPR104C 6.0302e-06 420 ATGGCGCTATCA 431+ (10.24060) (1.333119e-02)

>1YBR138C 9.2799%e-06 203 GCGGCGCTAGCA 214 + (12.42200) (4.809407e-04)
206 CCGCCTCGGCCA 195 - (8.225040) (4.975689e-02)

>tP(UGG)M 1.4586e-05 26 CCAGCTCGCCCC 15 - (8.644490) (1.269803e-02)
99 ACCACTAGACCA 110 + (7.042530) (4.773258e-02)

>iYHR217C 1.7438e-05 absent

>1YHR138C 3.9997e-05 145 TCGGCGCTACCA 134 - (11.23880) (3.713288e-03)

>1YKL172W 4.5759e-05 absent

>IntYGL103W 4.7991e-05 absent

>tL(UAG)L2 4.9893e-05 21 ACCACTCGGCCA 10 - (9.819350) (3.647425e-03)

>iYJR152W 5.1753e-05 absent

>tS(AGA)M 6.7229e-05 35 CCTGCGCGGGCA 46 + (9.031130) (6.321172e-03)

>tW(CCA)P 6.8308e-05 81 AAAGCTCTACCA 92 + (10.76890) (1.315551e-03)

>snR128 9.5071e-05 absent

>tI(UAU)L 9.5693e-05 26 GCAACGCGACCG 15 - (8.373710) (1.822708e-02)

>1YCR090C-0 1.0515e-04 absent

>IntYPLO81W 1.1828e-04 absent

>SNR190 1.1910e-04 162 CCGATTCGACCA 151 - (7.925580) (4.569485e-02)

>tL(CAA)C 1.2473e-04 24 ACCGCTCGGCCA 13 - (11.62350) (5.732354e-04)

>tP(AGG)C 1.3420e-04 24 CCGGCTCGCCCe 13 - (9.501020) (4.510700e-03)

>tS(GCU)L 1.9681le-04 absent

>tH(GUG)M 2.0224e-04 absent

>SNR43 2.681le-04 absent

>tS(CGA)C 3.0856e-04 71 CCAGCGCGGGCA 60 - (10.69280) (1.375755e-03)

>tK(UUU)P 3.1249e-04 55 AACGCTCTACCA 66 + (10.63040) (1.330965e-03)

>tN(GUU)P 4.7144e-04 32 CCAACTTGGCCA 21 - (7.907740) (2.015338e-02)

>tV (AAC)M3 4.8949e-04 60 CCGACTAGACCA 71 + (7.828140) (1.674674e-02)

>tA(UGC)O 5.7662e-04 48 AGCGCGCTACCA 59 + (9.775690) (2.504172e-03)

>tT (AGU)02 6.8638e-04 60 CCAACTTGGCCA 71 + (7.907740) (1.737360e-02)

>tR(UCU)M2 7.2321e-04 55 GACGCGTTGCCA 66 + (9.845220) (2.902318e-03)

>iYLR228C-1 8.1088e-04 absent

>tQ(UUG)L 8.1134e-04 absent

>tC(GCA)P2 9.1920e-04 46 GCTGCGCTACCA 57 + (11.88000) (2.284798e-04)

>iYDR261C-1 9.4038e-04 absent

>SNR44 9.4060e-04 absent

>tG(GCC)P2 9.5116e-04 26 CCAACGTTGCCA 37 + (9.164880) (5.191352e-03)

! 34 sequences in alignment

! Residue abundances:Pseudocounts

! A = 0.311204:0.466806 C = 0.188796:0.283194 G = 0.188796:0.283194 T = 0.311204:0.466806
! Total Time to find best alignment [13.92] secs

Fig. 13.2. A-GLAM output for a set of sequences containing an SNT2p motif identified using ChIP-chip. A-GLAM
works by analyzing completely random alignment of the sequences and making small refinements over ten alignment
runs with many iterations.
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Fig. 13.3. Sni2p regulatory motif identified with A-GLAM. Sequence logo representation of the motif obtained from the

ungapped multiple sequence alignment identified by A-GLAM.

transcription factor binding detection and analysis provide
a flexible and powerful framework (available at http://

ttbs.genereg.net/).

4. Other Web servers for logo generation include enoLOGOS
(available on the Web at http://biodev.hgen.pitt.edu/
enologos /) and Pictogram (http: //genes.mit.edu /pictogram.

html).
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Abstract

Background: Protein kinase (PK) genes comprise the third largest superfamily that occupy ~2% of the human genome.
They encode regulatory enzymes that control a vast variety of cellular processes through phosphorylation of their protein
substrates. Expression of PK genes is subject to complex transcriptional regulation which is not fully understood.

Principal Findings: Our comparative analysis demonstrates that genomic organization of regulatory PK genes differs from
organization of other protein coding genes. PK genes occupy larger genomic loci, have longer introns, spacer regions, and
encode larger proteins. The primary transcript length of PK genes, similar to other protein coding genes, inversely correlates
with gene expression level and expression breadth, which is likely due to the necessity to reduce metabolic costs of
transcription for abundant messages. On average, PK genes evolve slower than other protein coding genes. Breadth of PK
expression negatively correlates with rate of non-synonymous substitutions in protein coding regions. This rate is lower for
high expression and ubiquitous PKs, relative to low expression PKs, and correlates with divergence in untranslated regions.
Conversely, rate of silent mutations is uniform in different PK groups, indicating that differing rates of non-synonymous
substitutions reflect variations in selective pressure. Brain and testis employ a considerable number of tissue-specific PKs,
indicating high complexity of phosphorylation-dependent regulatory network in these organs. There are considerable
differences in genomic organization between PKs up-regulated in the testis and brain. PK genes up-regulated in the highly
proliferative testicular tissue are fast evolving and small, with short introns and transcribed regions. In contrast, genes up-
regulated in the minimally proliferative nervous tissue carry long introns, extended transcribed regions, and evolve slowly.

Conclusions/Significance: PK genomic architecture, the size of gene functional domains and evolutionary rates correlate
with the pattern of gene expression. Structure and evolutionary divergence of tissue-specific PK genes is related to the
proliferative activity of the tissue where these genes are predominantly expressed. Our data provide evidence that
physiological requirements for transcription intensity, ubiquitous expression, and tissue-specific regulation shape gene

structure and affect rates of evolution.
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Introduction

Phosphorylation of serine, threonine and tyrosine residues in
substrate proteins by protein kinases (PKs) provides a fundamen-
tal mechanism for the control of cell division, growth and
apoptosis, metabolic activity, adhesion and migration, and
mediates cell responses upon environmental stimuli [1,2,3]. At
the molecular level, phosphorylation-dephosphorylation allows
fast and sensitive regulation of enzyme activity. It is also a major
mechanism of transmembrane signal transduction and amplifi-
cation in the branching network of intracellular PK cascades that
ultimately control gene expression by phosphorylation of
transcription factors. Phosphorylation of protein substrates
creates binding sites for protein domains which recognize specific

@ PLoS ONE | www.plosone.org

phosphorylated amino acid sequences, thereby mediating pro-
tein-protein interactions [3,4].

The eukaryotic PK superfamily is subdivided into two broad
groups of conventional and atypical kinases. Conventional PKs have
been classified into eight families based on the structure and
sequence similarities of their conserved eukaryotic catalytic domains.
A smaller group of atypical PKs consists of several families that do
not carry well conserved kinase domains. Still, many atypical protein
kinases show evidence for enzyme activity. The number of PK genes
in the animal genome progressively grows from lower to higher
organisms, paralleling the evolutionary increase in the total number
of genes and the complexity of organization. The protein kinase
complement of the human genome (kinome) includes 518 predicted
genes, comprising the third-largest gene superfamily [5]. Compar-
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ative analysis of the mouse genome performed by different research
groups identified 540 to 561 candidate protein kinase genes [6,7].
According to a more recent conservative estimate, the human and
the mouse genomes contain 504 and 508 PK genes, correspondingly
[8]. The majority of the human protein kinases have orthologs in the
mouse, implying similar biological functions in both organisms.
Some of these enzymes are restricted to or predominantly expressed
in specialized tissues or cell types.

Expression of PK genes is subject to complex transcriptional
control, which is not fully understood. Although orthologization and
evolutionary conservation of PK protein sequences has been well
established, little is known about evolutionary conservation and the
function of non-coding DNA sequences of PK genes. Insights into
the function of non-coding DNA can be gained from comparative
analysis. According to estimations by different authors, fraction of
selectively constrained non-coding DNA sequences in mammalian
genomes represent from 3% (when highly conserved sequences
alone are taken into account) to 10% or more (when weaker
conservation is also considered) [9,10]. Evolutionary conservation of
non-coding DNA is controlled, at least in part, by negative selection
and high interspecies homology of non-coding DNA sequences
suggest their important regulatory function. For example, the vast
majority of experimentally defined binding sites for the human
skeletal muscle-specific transcription factors are confined to the
most constrained orthologous sequences in the rodent genome [11].
Because patterns of gene regulation and the corresponding
regulatory controls are often conserved between species, cross-
species sequence comparison, so-called “phylogenetic footprinting”,
may identify functional gene regulatory elements. Alignment
algorithms based on interspecies sequence comparison have
successfully been used to identify regulatory sites of genes expressed
in the skeletal muscle [11] and endothelial tissue [12]. Here we
employed a similar approach for identification of regulatory
elements in non-coding regions of mammalian PK genes.

We analyzed 497 orthologous genomic loci of the human and
mouse PK genes with the total length over 64 Mb, constituting about
2% of a mammalian genome. The goals of the present study were: 7)
evaluation of sequence conservation and evolutionary rates in non-
transcribed, transcribed and translated regions of PK genes, )
evaluation of the gene architecture and features of structural domains
in differentially expressed genes, i) identification of sequence
elements and regulatory signals associated with transcription levels
and message abundance, ) evaluation of PK tissue expression
patterns and sequence elements associated with tissue-specific gene
expression. Here we present data on the relative expression levels and
tissue-specific expression for the human kinome. We show that
architecture of regulatory PK genes significantly differs from other
protein coding genes and explore relationships between gene
structure, evolutionary conservation, transcript levels and breadth
of gene expression. We demonstrate that architecture of PK genomic
loci correlates with the mode of gene expression and proliferative
activity of the tissue where these genes are predominantly expressed.
We describe evolutionarily conserved signals associated with
transcript abundance and tissue-specific expression. Our results
suggest that requirements for ubiquitous expression and tissue-specific
regulation affect gene structure and impose selection pressure on the
protein-coding and non-coding gene regions.

Results

Transcription levels and tissue-specific expression of PK
genes

We evaluated expression of PK and non-PK genes based on the
numbers of gene-specific ESTs in GenBank originating from

@ PLoS ONE | www.plosone.org
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normal human tissues, which reflect mRNA abundance and
relative gene transcription levels. The vast majority of PK genes
scored moderate EST numbers (84 ESTs average) in contrast with
highly transcribed housekeeping non-PK genes (2000 or more
ESTs). Based on this analysis, PKs fall into a category of
moderately transcribed genes, which is consistent with their
regulatory role. These data are in agreement with overall PK
expression levels presented in the Gene Expression Atlas. For
evaluation of PK expression patterns and the relative abundance
of PK messages in different organs, we sorted gene-specific ESTs
in accordance with their organ and tissue origins. EST’s originating
from the brain and nervous tissue were most numerous in our
dataset, followed by ESTs from testis and placenta (Figure 1).
Distribution of PK-specific ESTs in 20 normal human organs and
tissues is presented in Table SI1. Our results showed that the
majority of PK genes were broadly expressed in many tissues. At
the same time, a number of PK genes showed distinct organ-
specific and tissue-specific expression patterns.

Remarkably, EST libraries from nervous and testicular tissues
were enriched with PK tags, relative to libraries from other tissues
(Figure 1A), suggesting increased phosphorylation-dependent
regulation in the brain and testis. Therefore, we focused our
attention on PKs up-regulated in these two tissues. A diverse group
of protein kinases that includes many members of CAMKI,
CAMK?2, DCAMKL, Eph, CDK, PKC and other families was
predominantly expressed in the brain and nervous tissue (Table
S1). Expression of VACAMKL, CaMK2 alpha, EphA7, PKC
gamma and PAKS5 was effectively restricted to the brain, and
many of the nervous tissue-specific PKs scored high numbers of
ESTs in GenBank, indicating active transcription. A smaller PK
group was preferentially expressed in the testis (BRDT, HIPK4,
MISR2, SgK307, SgK396, SSTK, TSSK1, TSSK2, TSSK4 and
others). Several genes were predominantly expressed in placenta
(TXK, FLT1, ACTR2B), muscle and heart (skMLCK, MSSK1),
and other tissues. In the cases where experimental results are
available, our identification of tissue-specific protein kinases was
supported by data from literature. For example, five testicular
protein kinases, TSSK1, TSSK2, SSTK, CAMK4, and Haspin,
are specifically expressed in haploid germ cells and two of these
enzymes (CAMK4 and SSTK) are indispensable for normal
progression of spermatogenesis and male fertility [13,14,15,16].
Experimental evidence for brain- and neuron-specific expression
was obtained for VACAMKL [17], PAKS5 [18], Eph receptor
tyrosine kinase EphA4 [19], CaMK1 gamma [20], CaMK2 alpha
[21], PKC gamma [22], CDK5 [23] and some other kinases
identified in our search.

Structural features of PK genes associated with

expression levels and breadth

For evaluation of gene architecture, we analyzed length and GC
content in different gene functional domains in 510 human PK
genomic loci. To compare structural properties of PK genes with
overall trends for other genes, we used control group of 7,711 well-
annotated human non-PK genes. Genomic architecture of PK and
non-PK genes significantly differed. As seen from Figure 2, PK
genes occupy larger genomic loci, possess significantly longer
exons and spacer regions, and encode larger proteins, relative to
the group of non-PK genes. PK genes also tend to have more GC-
rich UTRs relative to non-PK genes (Table 1). Remarkably,
lengths of gene loci, 5'-spacers, introns and UTRs of the human
PK genes were ~15% longer than for the mouse PK genes,
revealing higher gene complexity (Figure S1). Same trend was
observed for non-PK genes (data not shown).

October 2008 | Volume 3 | Issue 10 | 3599



Expression of PK Genes

Figure 1. Relative tissue distribution and abundance of EST for 7,711 non-PK genes and 512 PK genes in GenBank, release 162. A.
Relative tissue distribution of gene-specific EST for non-PK and PK genes. B. Abundance of PK-specific ESTs in libraries from normal human tissues.

The data were graphed as EST number versus PK rank.
doi:10.1371/journal.pone.0003599.9001

To analyze gene structural features associated with transcription
levels, we selected groups of high and low transcribed PK genes. For
both groups, we analyzed length, GC-content, and human-mouse
sequence conservation in gene functional domains. The proximal
3 kb spacer regions immediately upstream from the translation start
site that harbor promoters and the majority of known transcription
factor sites in humans were analyzed separately. Results of this
analysis are presented in Table 1 and Figure 2. Several structural

@ PLoS ONE | www.plosone.org

features were associated with active transcription and elevated
mRNA levels. Primary transcripts and introns of high expression
genes were significantly shorter than primary transcripts and introns
of low expression PK genes (p<<0.05). Consistent with published
data [24], this trend was also observed for non-PK genes. High
expression PK genes also possessed longer (p<<0.03) and a more
conserved (p<<0.02) 5'UTRs with significantly higher GC-content,
and significantly more conserved 3'UTRs (p<<10~*) with extended
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Figure 2. The length of the structural domains in human PK and non-PK genes. The following groups of differentially expressed PK genes
were analyzed: all PK genes, high expression genes (75 genes with highest EST numbers), low expression genes (75 genes with lowest EST numbers),
ubiquitously expressed genes, genes up-regulated in the nervous or testicular tissue, genes down-regulated in the nervous or testicular tissue.
Sequence conservation was evaluated relative to mouse gene orthologs. CDS of extremely large PK titin was excluded from this analysis. Data are

presented as averages.
doi:10.1371/journal.pone.0003599.g002

footprints, relative to low expression genes. We found no association
between expression levels and the length of mature mRNA, the size
of the protein and GC content in distant spacers, introns, and
primary transcripts. Similar results were obtained for the mouse PK
genes (Figure S1 and data not shown).

We analyzed structural features of PK genes associated with
breadth of expression (defined as the number of tissues where a
gene 1is expressed). We observed strong negative correlation
between the size of pre-mRNA and the number of expressing

@ PLoS ONE | www.plosone.org

tissues (R=—0.67, p=1.22x107°, Figure 3A). We also found
similar correlation for non-PK genes, which was primarily due to
smaller size of introns in broadly expressed genes.

Characteristic features of PK genes associated with

expression in brain and testis
Distribution of ESTs in tissue libraries (Figure 1A) and
expression profiling (Table S1) suggest that the brain and testis
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possess more complex phosphorylation dependent regulatory
networks, relative to other organs. To identify gene structural
features associated with expression in the nervous and testicular
tissue, we analyzed non-overlapping groups of genes predomi-
nantly expressed in these tissues. PK genes up-regulated in the
brain and testis were compared to control groups of ubiquitously
expressed PK genes, and genes down-regulated in these organs.
Overall gene organization and features of functional domains
significantly differed between these groups (Table 1, Figure 2).
Genomic loci and spacer regions of PK genes up-regulated in the
nervous tissue were generally longer than those of ubiquitously
expressed PKs (p<<0.0005) and other analyzed PK groups.
Similarly, primary transcripts and introns of PK up-regulated in
the nervous tissue were dramatically longer than those of
ubiquitously expressed PK genes (p<<0.0004 and p<<0.0005,
correspondingly) and PK genes of other groups.

In contrast, genes up-regulated in the testis were significantly
more compact than ubiquitously expressed PK genes (p<<0.05) and
genes predominantly expressed in nervous tissue ($<<0.005), with
shorter transcribed regions and smaller number of introns.
Testicular PK genes had two to three times shorter 5'-spacers
(»<<0.005) with significantly lower GC content ($<<0.02) in the
promoter regions than ubiquitously expressed PKs genes and

@ PLoS ONE | www.plosone.org

Table 1. GC-content and human-mouse sequence conservation in structural domains of human PK and non-PK genes.
Features Non- PK genes  PK genes  PK expression level ~ PK expression breadth
Ubiqui-tous Nervous tissue Testis

High Low Up-reg Down-reg Up-reg Down-reg
5’-spacer
Conservation, % 56.48 55.28 53.62 55.52 55.66 56.59 53.40 58.33 56.60
G+C content, % 45.53 47.39 47.33 47.36 50.65 49.17 49.54 48.05 49.82
Promoter region
Conservation, % 59.97 60.02 58.26 59.63 61.38 61.17 55.96 60.88 60.37
G+C content, % 48.42 50.83 50.25 49.61 56.27 53.19 52.00 48.52 53.10
Primary transcript
Conservation, % 59.88 59.03 59.70 59.28 59.17 58.41 57.78 66.54 61.46
G+C content, % 45.08 45.92 46.65 46.99 49.28 46.92 48.27 46.68 49.65
5'UTR
Conservation, % 7243 73.54 74.2 70.32 76.61 76.76 68.3 71.66 74.77
G+C content, % 61.27 65.32 66.58 61.01 7239 64.3 67.12 60.49 67.05
Protein coding regions
Conservation, % 85.28 87.08 87.81 84.85 88.80 88.57 85.03 84.83 87.40
G+C content, % 51.96 52.20 5253 52.65 54.37 54.05 53.68 51.23 54.25
Introns
Conservation, % 56.14 55.03 55.04 54.77 55.05 55.59 53.44 56.10 57.13
G+C content, % 43.64 45.08 45.82 45.96 48.63 46.53 47.40 40.92 48.97
Intron number 9.3 16.3 17 16.8 134 18 14 4.5 14.3
3'UTR
Conservation, % 68.59 69.48 70.83 64.13 71.69 71.19 64.96 66.19 68.47
G+C content, % 42,90 45.20 46.12 46.43 47.39 46.55 46.55 41.44 47.06
3'-spacer
Conservation, % 58.15 58.59 59.52 58.04 57.69 59.87 56.12 56.82 59.40
G+C content, % 4411 46.44 47.73 46.77 48.87 47.22 48.34 4433 46.86
Genomic repetitive elements were excluded from computation of sequence conservation. Data are presented as averages. Gene groups are defined in Figure 2 legend.
doi:10.1371/journal.pone.0003599.t001

genes up-regulated in nervous tissue (Table 1, Figure 2). Testis-
specific PK transcripts carried the shortest and least conserved
UTRs among all analyzed groups of PK transcripts.

Evolutionary divergence of the human and mouse PK
genes

For evaluation of evolutionary divergence, we constructed
detailed alignments for human and mouse PK genomic loci. Here
we present data for 497 orthologous gene pairs that yielded
complete collinear alignments of the transcribed regions, 5'- and
3’-spacer regions, collectively covering over 64 Mb of the human
genome. Incomplete alignhments that missed spacer regions due to
deletions or genomic translocations were not used in our analysis.
To compare evolutionary divergence of PK genes with overall
trends for other genes, we constructed alignments for control
group of 7,711 well annotated orthologous human and mouse
non-PK genes.

Protein coding regions of the human and mouse PK orthologs
were highly conserved (over 80% identity in nucleotide sequences).
To evaluate selection pressure on coding sequences, we calculated
levels of non-synonymous (K,) and synonymous (K;) human-
mouse nucleotide substitutions in the protein coding regions of PK
and non-PK genes using Yang’s model [25]. Results of these
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Figure 3. Correlations between the level of human-mouse evolutionarily divergence in protein coding and untranslated regions of
human PK genes, expression breadth, and the size of pre-mRNA. A. Correlation between non-synonymous divergence, PK expression
breadth and the size of pre-mRNA. Breadth of gene expression was estimated as the number of organ and tissue sources of gene-specific ESTs. Data
are presented as averages and SEM. B. Correlations between evolutionarily divergence in protein coding regions and UTRs of PK genes.

doi:10.1371/journal.pone.0003599.g003

calculations are presented in Table 2. The Wilcoxon rank sum test
showed that the average K, values and K,/K; ratios were
significantly lower for PK coding regions, relative to non-PK
genes, indicating stronger purifying selection on PK amino acid
sequences. Evolutionary changes in PK protein-coding regions
were not homogeneous. Kinase modular domains in CDSs were
more conserved than inter-domain regions. Within the group of
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PK' genes, selective pressure on non-synonymous sites varied
significantly depending on expression levels and the number of
tissues in which genes were expressed. The level of non-
synonymous substitutions in PK genes negatively correlated with
breadth of gene expression (R=—0.82, p=1.73x10~7, Figure 3A),
which is consistent with a general trend for non-PK genes and
correlations observed in protein coding regions of non-regulatory
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genes [26,27]. The level of non-synonymous substitutions in PK
genes also negatively correlated with gene expression levels
(R=—0.72, p=7.35%x10"%, Figure S2) and positively correlated
with the size of pre-mRNA (R=0.39, p<<0.01).

On average, protein coding sequences of ubiquitous PKs
evolved slower than those of differentially expressed PKs, as seen
from their low K, values (Table 2). PKs with restricted tissue
expression (rank of expression breadth=5) evolved significantly
faster ($<<0.001) than broadly expressed genes (rank of expression
breadth>30). However, the group of PKs with restricted tissue
expression is evolutionarily diverse, as seen from the high values of
K, standard errors for these kinases (Figure 3A), indicating strong
variability in rates of their evolution. For example, PKs up-
regulated in the highly proliferative testicular tissue evolved almost
three times faster than PKs up-regulated in the minimally
proliferative nervous tissue which evolved slow, similar to broadly
expressed PKs, as seen from their low K, values. Contrarily, K
values in the protein coding regions did not differ significantly
between ubiquitously and differentially expressed PK groups and
did not correlate with gene expression patterns (Table 2),
indicating similar levels of synonymous mutations. These results
indicate that the differences in K, values observed between the
groups of ubiquitously and differentially expressed PKs are not
caused by regional variations in the neutral mutation rate and
reflect increased selective pressure on amino acid sequences.

Interestingly, PKs down-regulated in the nervous tissue and PKs
with generally low transcription levels also displayed increased
divergence in amino acid sequences. Same trends were observed in
5" and 3'UTRs.

We compared evolutionary rates in transcribed domains of PK
and non-PK genes by evaluating the human-mouse evolutionary
divergence in 5'UTRs (K5/), CDSs (K.), introns (K;), and 3'UTRs
(K37) using Kimura’s two parameter model [28]. PK genes are
characterized with lower K. values, relative to non-PK genes,
reflecting higher constraint on amino acid sequences. We also
observed increased K; values in PK introns, as compared to non-
PK introns. As shown in Table 2, evolutionary divergence was
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Table 2. Human-mouse evolutionary divergence in the protein coding and untranslated regions of domains of human PK and
non-PK genes.
K values Non- PK genes PK genes PK expression level PK expression breadth
Ubiqui-tous Nervous tissue Testis

High Low Up-reg Down-reg Up-reg Down-reg
5’-spacer
Ks 0.346 (0.002) 0339 (0.013)  0.322 (0.024) 0.356 (0.034)  0.298 (0.026)  0.288 (0.041)  0.396 (0.039)  0.325 (0.047)  0.340 (0.035)
Protein coding regions
Ke 0.171 (0.001) 0.159 (0.003)  0.145 (0.006) 0.186 (0.009)  0.135 (0.006)  0.149 (0.008)  0.177 (0.010)  0.189 (0.013)  0.144 (0.011)
Ka 0.073 (0.001) 0.050 (0.002)  0.042 (0.005) 0.060 (0.005)  0.029 (0.003)  0.031 (0.012)  0.057 (0.008)  0.095 (0.012)  0.046 (0.009)
Ks 0.558 (0.002) 0.548 (0.007)  0.540 (0.017) 0.560 (0.018)  0.530 (0.020)  0.538 (0.026)  0.609 (0.025)  0.510 (0.042)  0.540 (0.017)
Ka/Ks 0.128 0.089 0.080 0.110 0.050 0.090 0.090 0.190 0.080
3'UTR
Ks 0.379 (0.002) 0.376 (0.012) 0.371 (0.038) 0.431 (0.018) 0.322 (0.022) 0.357 (0.028) 0.411 (0.023) 0.447 (0.047) 0.379 (0.021)
Introns
K; 0.545 (0.001) 0.564 (0.006)  0.556 (0.013) 0.571 (0.014)  0.579 (0.020)  0.533 (0.013)  0.605 (0.021)  0.571 (0.046)  0.508 (0.016)
Evolutionary divergence in the protein coding regions (Ke), 5'UTRs (Ks'), and 3'UTRs (K3/) was calculated using Kimura's two parameter model [28]. Rates of synonymous
(Ks) and non-synonymous (K,) divergence were calculated using Yang’s model [25]. Gene groups are defined in Figure 2 legend. Data are presented as averages and the
standard error of the mean (SEM, shown in the parentheses).
doi:10.1371/journal.pone.0003599.t002

significantly lower for both PK and non-PK genes in 5'UTRs
(p<<1077) and 3'UTRs (p<<107>), relative to introns. We found
significant positive correlations between levels of evolutionary
divergence in CDSs and 3'UTR, in CDSs and 5'UTRs of PK
genes (Figure 3B). Similar to K, values, Kj values inversely
correlated with breadth of gene expression (R=—0.11, p<<0.01).
Positive correlation between K. and Kj' values was observed for
PKs predominantly expressed in nervous tissue, and for other
differentially expressed PK groups (Figure 4). This trend was also
observed for slow evolving ubiquitous PKs.

Regulatory signals in PK genes associated with
transcription levels

Taking into consideration strong relationships between gene
transcription levels, evolutionary conservation, and the structure of
regulatory domains, we attempted to identify evolutionary
conserved DNA elements that regulate gene expression. For
regulatory elements associated with transcript abundance, we
searched for motifs over-represented in conserved promoter
regions of high expression PK genes using the discriminating
matrix emulator (DME) program. Conserved promoter sequences
of low expression PK genes were used as a background set in this
analysis. DME search revealed a number of motifs ranging from 6
to 10 nt which were significantly over-represented in promoters of
high expression PK genes. Some of the characteristic over-
represented motifs are shown on Figure S3, and the top 50 over-
represented motifs are presented in Table S1. Promoters of high
expression, actively transcribed PK genes were enriched with GC-
rich motifs. In contrast, promoter regions of low expression PK
genes were 